
Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for

High-Dimensional Data Streams

Marco Heyden*, Edouard Fouché, Vadim Arzamasov, Tanja
Fenn, Florian Kalinke and Klemens Böhm

Karlsruhe Institute of Technology, Karlsruhe, Germany.

*Corresponding author(s). E-mail(s): marco.heyden@kit.edu;
Contributing authors: firstname.lastname@kit.edu;

Acknowledgments

This work was supported by the German Research Foundation (DFG)
Research Training Group GRK 2153: Energy Status Data — Informatics
Methods for its Collection, Analysis and Exploitation.

This version of the article has been accepted for publication, after
peer review but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Re-
cord is available online at: https://doi.org/10.1007/s10618-023-00999-5.

Abstract

Change detection is of fundamental importance when analyzing data
streams. Detecting changes both quickly and accurately enables mon-
itoring and prediction systems to react, e.g., by issuing an alarm or
by updating a learning algorithm. However, detecting changes is chal-
lenging when observations are high-dimensional. In high-dimensional
data, change detectors should not only be able to identify when
changes happen, but also in which subspace they occur. Ideally, one
should also quantify how severe they are. Our approach, ABCD, has
these properties. ABCD learns an encoder-decoder model and mon-
itors its accuracy over a window of adaptive size. ABCD derives a
change score based on Bernstein’s inequality to detect deviations in
terms of accuracy, which indicate changes. Our experiments demon-
strate that ABCD outperforms its best competitor by up to 20% in
F1-score on average. It can also accurately estimate changes’ subspace,
together with a severity measure that correlates with the ground truth.

Keywords: change detection, concept drift, data streams, high-dimensionality

1

https://doi.org/10.1007/s10618-023-00999-5

Springer Nature 2021 LATEX template

2 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

1 Introduction

Data streams are open-ended, ever-evolving sequences of observations from
some process. They pose unique challenges for analysis and decision-making.
One crucial task is to detect changes, i.e., shifts in the observed data, that
may indicate a change in the underlying process. Change detection has been
an active research area. However, the high-dimensional setting, in which ob-
servations contain a large number of simultaneously measured quantities, did
not receive enough attention. Yet, it may yield useful insights in environmental
monitoring (de Jong and Bosman, 2019), human activity recognition (Vrigkas
et al, 2015), network traffic monitoring (Naseer et al, 2020), automotive (Liu
et al, 2019), predictive maintenance (Zhao et al, 2018), and biochemical
engineering (Mowbray et al, 2021):

Example (Biofuel production). The production of fuel from biomass is a
complex process comprising many interdependent process steps. Those in-
clude pyrolysis, synthesis, distillation, and separation. Many steps rely on
(by-)products of other steps as reactants, leading to a highly interconnected
system with many process parameters. A monitoring system tracks the process
parameters to detect failures in the plant: (i) The system must detect changes
in a large (i.e., high-dimensional) vector of process parameters, which may in-
dicate failures. (ii) The system must find out which process parameters are
affected by the change to allow for a targeted reaction. Since the system is very
complex and has many interconnected components, change is often evident
only when considering correlations between process parameters. An example
would be the correlation between temperature and concentration fluctuations.
So it is insufficient to monitor each process parameter in isolation. (iii) There
can exist slight changes which only require minor adjustments and more severe
ones that require immediate intervention to avoid a shutdown of the plant.
The monitoring system should provide an estimate of the severity of change.

The example illustrates three requirements for modern change detectors:

• R1: Change point. The primary task of change detectors is to identify
that the data stream has changed and when it occurred.

• R2: Change subspace. A change may only concern a subset of dimen-
sions — the change subspace. Change detectors for high-dimensional data
streams should be able to identify such subspaces.

• R3: Change severity. Quantifying relative change severity to distinguish
between changes of different importance is essential to react appropriately.

Prior works already acknowledge the relevance of the above require-
ments (Lu et al, 2019; Webb et al, 2018). However, fulfilling R1–R3 in
combination remains challenging since they depend on each other: on the one
hand, detecting changes in high-dimensional data is difficult because changes
typically only affect few dimensions. Unaffected dimensions “dilute” a change
(i.e., a change occuring in a subspace appears to be less severe in the full space).

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 3

This might make changes harder to detect in all dimensions. On the other
hand, detecting the change subspace should occur after detecting a change,
since monitoring all possibles subspaces is intractable. Last, one should restrict
computation of change severity to the change subspace to eliminate dilution.

Existing methods for change detection, summarized in Table 1, either
are univariate (UV), multivariate (MV), or specifically designed for high-
dimensional data (HD); the latter claim efficiency w.r.t. high-dimensionality
or resilience against the “curse of dimensionality”. However, they do not fulfill
R1-R3 in combination sufficiently well as Section 2 describes.

Thus, we propose the Adaptive Bernstein Change Detector (ABCD), which
addresses R1-R3 in combination. We articulate our contributions as follows:

(i) Problem Definition: We formalize the problem of detecting changes
in high-dimensional data streams such that R1-R3 can be tackled in com-
bination. (ii) Adaptive Bernstein Change Detector: We present ABCD,
a change detector for high-dimensional data, that satisfies R1–R3. It monit-
ors the loss of an encoder-decoder model using an adaptive window size and
statistical testing. Adaptive windows enable ABCD to detect severe changes
quickly and, over a longer period, identify hard-to-detect changes that would
typically require a large window size. (iii) Bernstein change score: Our ap-
proach applies a statistical test based on Bernstein’s inequality. This limits the
probability of false alarms. (iv) Online computation: We propose an effi-
cient method for computing the change score in adaptive windows and discuss
design choices leading to constant time and memory. (v) Benchmarking:
We conduct experiments on 10 data streams based on real-world and synthetic
data with many dimensions and compare ABCD with recent approaches. The
results indicate that ABCD outperforms its competitors consistently w.r.t.
R1–R3, is robust to high-dimensional data and is useful in domains including
human activity recognition, gas detection, and image processing. We also study
ABCD’s parameter sensitivity. Our code1 follows the popular Scikit-Multiflow
API (Montiel et al, 2018), so it is easy to use in future research.

2 Related work

2.1 Change detector types

Most existing change detectors are supervised, i.e., they focus on detecting
changes in the relationship between input data and a target variable (Iwashita
and Papa, 2019). However, class labels are rarely available in reality, which
limits their applicability. On the contrary, the unsupervised change detectors
aim to detect changes only in the input data. Our approach belongs to this
category, so we restrict our review to unsupervised approaches.

Most existing approaches detect changes whenever a measure of discrep-
ancy between newer observations (the current window) and older observa-
tions (the reference window) exceeds a threshold. Some approaches, e.g.,

1https://github.com/heymarco/AdaptiveBernsteinChangeDetector

https://github.com/heymarco/AdaptiveBernsteinChangeDetector

Springer Nature 2021 LATEX template

4 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

Table 1: Related work.

Approach Reference Type R1 R2 R3

ADWIN Bifet and Gavaldà (2007) UV ✓ – –
SeqDrift2 Pears et al (2014) UV ✓ – –
kdq-Tree Dasu et al (2006) MV ✓ – ✓
PCA-CD Qahtan et al (2015) MV ✓ – ✓
IKS dos Reis et al (2016) MV ✓ ✓ –
LDD-DSDA Liu et al (2017) MV ✓ – –
AdwinK Faithfull et al (2019) MV ✓ ✓ –
D3 Gözüaçık et al (2019) MV ✓ – ✓
ECHAD Ceci et al (2020) MV ✓ – ✓
IBDD de Souza et al (2020) HD ✓ – ✓
WATCH Faber et al (2021) HD ✓ – ✓
ABCD this work HD ✓ ✓ ✓

D3 (Gözüaçık et al, 2019) or PCA-CD (Qahtan et al, 2015), implement the
reference and current window as two contiguous sliding windows. Other ap-
proaches, such as IBDD (de Souza et al, 2020), IKS (dos Reis et al, 2016) or
WATCH (Faber et al, 2021) use a fixed reference window. A major problem
is to choose the appropriate size for the window; thus (Bifet and Gavaldà,
2007) propose windows of adaptive size, that grow while the stream remains
unchanged and shrink otherwise. Several work leverage this principle, e.g. (Sun
et al, 2016; Khamassi et al, 2015; Fouché et al, 2019; Suryawanshi et al, 2022).
We also use adaptive windows to lower the number of parameters of ABCD.

2.2 Univariate change detection

There exist many approaches for change detection in univariate (UV) data
streams. Two of them, Adaptive Windowing (ADWIN) (Bifet and Gavaldà,
2007) and SeqDrift2 (Pears et al, 2014), share some similarity with our ap-
proach. Like ADWIN, ABCD relies on an adaptive window. Like SeqDrift2,
it uses Bernstein’s inequality (Bernstein, 1924). But unlike ADWIN and
SeqDrift2, ABCD can handle high-dimensional data while fulfilling R1-R3.

2.3 Multivariate change detection

To detect changes in multivariate (MV) data, some approaches apply univari-
ate algorithms in each dimension of the stream. Faithfull et al (2019) propose
to use one ADWIN detector per dimension (with k dimensions). They de-
clare a change whenever a certain fraction of the detectors agree. We call this
approach AdwinK later on. Similarly, IKS (dos Reis et al, 2016) uses an incre-
mental variant of the Kolmogorov-Smirnov test deployed in each dimension.
Unlike AdwinK, IKS issues an alarm if at least one dimension changes.

There also exist approaches specifically designed for multivariate (Jaworski
et al, 2020; Ceci et al, 2020; Qahtan et al, 2015; Gözüaçık et al, 2019; Dasu
et al, 2006), or even high-dimensional (HD) data (Faber et al, 2021; de Souza
et al, 2020). Similar to ABCD, Jaworski et al (2020) and Ceci et al (2020)

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 5

use dimensionality-reduction methods to capture the relationships between di-
mensions. However, our approach is computationally more efficient, limits the
probability of false alarms, identifies change subspace, and estimates change
severity. D3 (Gözüaçık et al, 2019) uses the AUC-ROC score of a discrim-
inative classifier that tries to distinguish the data in two sliding windows.
It reports a change if the AUC-ROC score exceeds a pre-defined threshold.
PCA-CD (Qahtan et al, 2015) first maps observations in two windows to
fewer dimensions using PCA. Then the approach estimates the KL-divergence
between both windows for each principal component. PCA-CD detects a
change if the maximum observed KL-divergence exceeds a threshold. How-
ever, (Goldenberg and Webb, 2019) point out that this technique is limited to
linear transformations and ignores combined change in multiple dimensions.
LDD-DSDA (Liu et al, 2017) measures the degree of local drift that describes
regional density changes in the input data. The approach proposed by (Dasu
et al, 2006) structures observations from two windows (sliding or fixed) in a
kdq-tree. For each node, they measure the KL-divergence between observa-
tions from both windows. However, (Qahtan et al, 2015) show experimentally
that this approach is not suitable for high-dimensional data.

IBDD (de Souza et al, 2020) and WATCH (Faber et al, 2021) specifically
address challenges arising from high-dimensional data. The former monitors
the mean squared deviation between two equally sized windows. The latter
monitors the Wasserstein distance between a reference and a sliding window.
However, both cannot detect change subspaces or measure severity.

2.4 Offline change point detection

Offline change point detection, also known as signal segmentation, divides time
series of a given length into K homogeneous segments (Truong et al, 2020).
Many of the respective algorithms are not suitable for data streams: Some
require specifying K a priori (Bai and Perron, 2003; Harchaoui and Cappe,
2007; Lung-Yut-Fong et al, 2015); others (Killick et al, 2012; Lajugie et al,
2014; Matteson and James, 2014; Chakar et al, 2017; Garreau and Arlot, 2018)
scale superlinearly with time. WATCH (Faber et al, 2021), discussed above, is
the state of the art extension of offline change point detection to data streams.

2.5 Change subspace

The notion of a change subspace is different from the existing notion of change
region (Lu et al, 2019). The former describes a subset of dimensions that
changed, the latter identifies density changes in some local region, e.g., a hyper-
rectangle or cluster (Liu et al, 2017). Our definition of change subspaces is
related to marginal change magnitude (Webb et al, 2018), but is more general
since it can also accomodate changes in a subspace’s joint distribution.

Because high-dimensional spaces are typically sparse (due to the curse of
dimensionality), identifying density changes in them is not effective. On the
other hand, knowing that a change affected a specific set of dimensions can

Springer Nature 2021 LATEX template

6 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

help identify the cause of the change, as we have motivated in our introductory
example. Thus, we focus on detecting change subspaces in this work.

In the domain of statistical process control, some approaches extend well-
known methods, such as Cusum (Page, 1954) or Shewhart charts (Shewhart,
1930), to multiple dimensions. They address the problem of identifying change
subspaces to some extent, however, they often make unrealistic assumptions:
they focus on Gaussian or sub-Gaussian data (Chaudhuri et al, 2021; Xie et al,
2020), require that different dimensions are initially independent (Chaudhuri
et al, 2021), require subspace changes to be of low rank (Xie et al, 2020), or
assume that the size of the change subspace is known a priori (Jiao et al, 2018).

From the approaches reviewed in Section 2.3 only AdwinK and IKS identify
the corresponding change subspace. However, both approaches do not find
changes that hide in subspaces, e.g., correlation changes, because they mon-
itor each dimension in isolation. In contrast, our approach aims to learn the
relationships between different dimensions so that it can detect such changes.
Next, AdwinK cannot identify subspaces with fewer than k dimensions.

2.6 Change severity

According to (Lu et al, 2019), change severity is a positive measure of the
discrepancy between the data observed before and after the change. One can
either measure the divergence between distributions directly, as done by kdq-
Tree (Dasu et al, 2006), LDD-DSDA (Liu et al, 2017), and WATCH(Faber
et al, 2021), or indirectly with a score that correlates with change severity,
as done by D3 (Gözüaçık et al, 2019). Following this reasoning, an approach
that satisfies R3 should compute a score that depends on the change sever-
ity (Gözüaçık et al, 2019; Dasu et al, 2006; de Souza et al, 2020; Qahtan
et al, 2015; Faber et al, 2021), i.e., the higher the score, the higher the sever-
ity. Finally, hypothesis-testing-based approaches, such as ADWIN (Bifet and
Gavaldà, 2007), SeqDrift2 (Pears et al, 2014), AdwinK (Faithfull et al, 2019),
or IKS (dos Reis et al, 2016), do not quantify change severity: a slight change
observed over a longer time can lead to the same p-value as a severe change
observed over a shorter time, hence p is not informative about change severity.

2.7 Pattern based change detection

A related line of research, pattern-based change detection, deals with identi-
fying changes in temporal graphs (Loglisci et al, 2018; Impedovo et al, 2019,
2020a,b). In particular, Loglisci et al (2018) detect changes in the graph,
identify the affected subgraphs, and quantify the amount of change for these
subgraphs. This is similar to our methodology. However, these methods work
well with graph data, but we are dealing with vector data. To apply these
methods in our context, one would need to create a graph, e.g., by represent-
ing each dimension as a node and indicating pairwise correlations with edges.
However, constructing such a graph becomes impractical for high-dimensional
observations because of the exponentially growing number of subspaces.

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 7

2.8 Competitors

In our experiments, we compare to AdwinK, IKS, D3, IBDD, and WATCH.
IBDD, WATCH, and D3 are recent change detectors for multivariate and high-
dimensional data that fulfill R3. AdwinK extends the ADWIN algorithm to the
multivariate case and fulfills R2. Finally, IKS is the only approach employing a
non-parametric two-sample test for change detection while also satisfying R2.

3 Preliminaries

We are interested in finding changes in the last t observations S =
(x1, x2, . . . , xt) from a stream of data. Each xi is a d-dimensional vector inde-
pendently drawn from a (unknown) distribution Fi. We assume without loss
of generality that each vector coordinate is bounded in [0, 1], i.e., xi ∈ [0, 1]d.

Definition 1 (Change). A change occurs at time point t∗ if the data-
generating distribution changes after t∗: Ft∗ ̸= Ft∗+1.

In high-dimensional data, changes typically affect only a subset of dimen-
sions, which we call the change subspace. Let D = {1, 2, . . . , d} be the set of
dimensions and FD′

i be the joint distribution of Fi observed in the subspace
D′ ⊆ D at time step i. We define the change subspace as follows:

Definition 2 (Change subspace). The change subspace D∗ at time t∗ is the
union of all D′ ⊆ D in which the joint distribution FD′

changed and which
does not contain a subspace D′′ for which FD′′

t∗ ̸= FD′′

t∗+1.

If the dimensions inD∗ are uncorrelated, then changes will be visible on the
marginal distributions, i.e., all D′ are of size 1. However, changes may only be
detectable w.r.t the joint distribution of D∗ or the union of its subspaces of size
greater than 1, which our definition accommodates. Note that the definition
can also handle multiple co-occurring changes and considers them as one single
change. Last, change severity measures the difference between FD∗

t∗ and FD∗

t∗+1:

Definition 3 (Change severity). The severity of a change is a positive function
∆ of the mismatch between FD∗

t∗ and FD∗

t∗+1.

Since we do not know the true distributions Ft∗ and Ft∗+1, the best we can
do is detecting changes and their characteristics based on the observed data.

4 Approach

4.1 Principle of ABCD

Direct comparison of high-dimensional distributions is impractical as it re-
quires many samples (Gretton et al, 2012). Yet the number of variables required

Springer Nature 2021 LATEX template

8 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

MSE

t

ϕ ψxi x̂iMSE

t∗

Detect change point
Estimate
change
severity

Detect change
subspace

∆

Figure 1: Overview of ABCD.

to describe such data with high accuracy is often much smaller than d (Lee and
Verleysen, 2007). Dimensionality reduction techniques let us encode observa-
tions in fewer dimensions. The more information encodings retain, the better
one can reconstruct (decode) the original data. However, if the distribution
changes, the reconstruction will degrade and produce higher errors.

We leverage this principle in ABCD by monitoring the reconstruction loss
of an encoder-decoder model ψ ◦ ϕ for some encoder function ϕ and decoder
function ψ. Figure 1 illustrates this. Specifically, we first learn ϕ : [0, 1]d →
[0, 1]d

′
with d′ = ⌊ηd⌋ < d, η ∈ (1/d, 1), mapping the data to fewer dimensions,

and ψ : [0, 1]d
′ → [0, 1]d. Then, we monitor the loss between each xt and its

reconstruction x̂t = ψ ◦ ϕ(xt) = ψ(ϕ(xt)):

Lt =MSE(xt, x̂t) =
1

d

d∑
j=1

(xt,j − x̂t,j)2 =
1

d

d∑
j=1

Lt,j (1)

We hypothesize that distribution changes lead to outdated encoder-decoder
models — see for example (Jaworski et al, 2020) for empirical evidence. Hence,
we assume that changes in the reconstruction affect the mean µt∗+1 of the
loss, because the model can no longer accurately reconstruct the input:

Ft∗ ̸= Ft∗+1 =⇒ µt∗ ̸= µt∗+1 (2)

We can now replace the definition of change in high-dimensional data with
an easier-to-evaluate, univariate proxy:

∃t∗ ∈ [1, . . . , t] : µt∗ ̸= µt∗+1 (3)

It allows detecting arbitrary changes in the original (high-dimensional) dis-
tribution as long as they affect the average reconstruction loss of the
encoder-decoder. Since the true µt∗ and µt∗+1 are unknown, we estimate them
from the stream:

µ̂1,t∗ =
1

t∗

t∗∑
i=1

Li, µ̂t∗+1,t =
1

t− t∗
t∑

i=t∗+1

Li. (4)

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 9

4.2 Detecting the change point

ABCD detects a change at t∗ if µ̂1,t∗ differs significantly from µ̂t∗+1,t. To
quantify this, we derive a test based on Bernstein’s inequality (Bernstein,
1924). It is often tighter than more general alternatives like Hoeffding’s in-
equality (Boucheron et al, 2013). Let µ̂1, µ̂2 be the averages of two independent
samples from two univariate random variables. One wants to evaluate if both
random variables have the same expected values: The null hypothesis H0 is
µ1 = µ2. Based on the two samples, one rejects H0 if Pr (|µ̂1 − µ̂2| ≥ ϵ) ≤ δ
where δ is a preset significance level. The following theorem allows evaluating
Equation (3) based on Bernstein’s inequality.

Theorem 1 (Bound on Pr (|µ̂1 − µ̂2| ≥ ϵ)). Given two independent samples
X1, X2 of size n1 and n2 from two random variables with unknown expected
values µ1, µ2 and variances σ2

1 , σ
2
2. Let µ̂1, µ̂2 denote the sample means and let

|µ1 − xi| < M for all xi ∈ X1 and |µ2 − xi| < M for all xi ∈ X2 respectively.
Assuming µ1 = µ2, we have:

Pr (|µ̂1 − µ̂2| ≥ ϵ) ≤

2 exp

{
− n1(κϵ)

2

2
(
σ2
1 +

1
3κMϵ

)}+ 2 exp

{
− n2((1− κ)ϵ)2
2
(
σ2
2 +

1
3 (1− κ)Mϵ

)} ∈ (0, 4]

∀κ ∈ [0, 1]. (5)

Proof We follow the same steps as in (Bifet and Gavaldà, 2007; Pears et al, 2014).
Recall Bernstein’s inequality: Let x1, . . . , xn be independent random variables

with sample mean µ̂ = 1/n
∑

xi and expected value µ s.th. ∀xi : |xi − µ| ≤ M .
Then, for all ϵ > 0,

Pr (|µ̂− µ| ≥ ϵ) ≤ 2 exp

{
− nϵ2

2
(
σ2 + 1

3Mϵ
)} . (6)

We apply the union bound to Pr (|µ̂1 − µ̂2| ≥ ϵ). For all κ ∈ [0, 1], we have:

Pr (|µ̂1 − µ̂2| ≥ ϵ) ≤ Pr (|µ̂1 − µ1| ≥ κϵ) + Pr (|µ̂2 − µ2| ≥ (1− κ)ϵ) (7)

Substituting above with Bernstein’s inequality completes the proof. □

With regard to change detection, one can use Equation (5) to evaluate for
a time point k if a change occurred. The question is, however, how to choose
ϵ to limit the probability of false alarm at any time t to a maximum δ.

Our approach is to set ϵ to the observed |µ̂1,k − µ̂k+1,t| and to set n1 = k,
n2 = t − k. The result bounds the probability of observing |µ̂1,k − µ̂k+1,t|
between two independent samples of sizes k and t− k under H0. If this prob-
ability is very low, the distributions must have changed at k. Then, we search
for changes at multiple time points k in the current window. Hence, we obtain
multiple such probability estimates; our change score is their minimum:

p = min
k

Pr (|µ̂1 − µ̂2| ≥ |µ̂1,k − µ̂k+1,t|) (8)

Springer Nature 2021 LATEX template

10 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

The corresponding change point t∗ splits (L1, L2, . . . , Lt) into the two subwin-
dows with the statistically most different mean.

4.2.1 Choice of parameter κ

The bound in Equation (5) holds for any κ ∈ [0, 1]. A good choice, however,
provides a tighter estimate, resulting in faster change detection for a given rate
of allowed false alarms δ. (Bifet and Gavaldà, 2007) suggest to choose κ s.th.
Pr(|µ̂1 − µ1| ≥ κϵ) ≈ Pr(|µ̂2 − µ2| ≥ (1− κ)ϵ), that approximately minimizes
the upper bound. Substituting both sides with Bernstein’s inequality, we get

n1(κϵ)
2

σ2
1 +

κMϵ
3

=
n2(1− κ)2ϵ2

σ2
2 +

(1−κ)Mϵ
3

. (9)

Setting n1 = rn2 and simplifying, we have

3σ2
1 + κMϵ

rκ2
=

3σ2
2 + (1− κ)Mϵ

(1− κ)2 . (10)

To solve for κ, note that |µ̂1,k − µ̂k+1,t| ≈ 0 for large enough k and t − k
while there is no change. This leads to a change score p≫ δ for any choice of
κ. Hence, choosing κ optimal is irrelevant while there is no change.

In contrast, if a change occurs, the change in the model’s loss dominates
the variance in both subwindows, leading to Mϵ ≫ σ2

1 , σ
2
2 . In that case, the

influence of σ2
1 , σ

2
2 is negligible for sufficiently large κ and 1− κ:

κMϵ

rκ2
=

(1− κ)Mϵ

(1− κ)2 . (11)

Solving Equation (11) for κ results in our recommendation for κ (Equation (12)
which we restrict to [κmin, 1− κmin] with κmin = 0.05.

κ =
1

1 + r
=

n2
n1 + n2

(12)

4.2.2 Minimum sample sizes and outlier sensitivity

This section investigates the conditions under which ABCD detects changes.
We derive a minimum size of the first window above which ABCD detects a

change. It bases on the fact that the number of observations before an evaluated
time point k remains fixed while the number of observations after k grows with
t. Those counts are n1 = k and n2 = t − k in Equation (5). Also, since we
consider bounded random variables, their variance is bounded as well. Hence,
the second term in Equation (5) approaches 0 for any ϵ > 0. With this, solving

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 11

Equation (5) for n1 yields:

n1 ≥
⌈
2 log

(
2

δ

)(
σ2
1

(κϵ)2
+

M

3κϵ

)⌉
. (13)

By setting ϵ = |µ̂1−µ̂2| we see that the required size of the first window de-
creases the larger the change in the average reconstruction error. For example,
with M = 1, ϵ = σ1 = 0.1, and δ = 0.05 our approach requires n1 ≥ 32.

Since ABCD detects changes in the average reconstruction loss of a
bounded vector, it is stable with respect to outliers as long as they are reason-
ably rare. To see this, assume w.l.o.g. that window 1 contains nout outliers and
that ϵ > 0. One can show that the average of the outliers, µ̂out, must exceed
the average of the remaining inliers, µ̂in, by n1ϵ/nout. In the example above,
a single outlier would thus have to exceed µ̂in by n1ϵ = 3.2. This, however, is
impossible because M = 1 bounds the reconstruction loss.

4.3 Detecting the change subspace

After detecting a change, we identify the change subspace. Restricting the
encoding size to d′ < d forces the model to learn relationships between differ-
ent input dimensions. As a result, the loss observed for dimension j contains
not only information about the change in that dimension (i.e., the marginal
distribution in j changes), but also about correlations influencing dimension
j. Hence, we can detect changes in the marginal- and joint-distributions by
evaluating in which dimensions the loss changed the most.

Algorithm 1 describes how we identify change subspaces. For each di-
mension j, we compute the average reconstruction loss (the squared error in
dimension j) before and after t∗, denoted µ̂j

1,t∗ , µ̂
j
t∗+1,t (lines 5 and 6), and

the standard deviation σj
1,t∗ , σ

j
t∗+1,t (lines 6 and 7). We then evaluate Equa-

tion (5), returning an upper bound on the p-value in the range (0, 4] for
dimension j (line 9). If pj < τ ∈ [0, 4], an external parameter for which we give
a recommendation later on, we add j to the change subspace (lines 10 and 11).

4.4 Quantifying change severity

ABCD provides a measure of change severity in the affected subspace, based
on the assumption that the loss in the change subspace increases with severity.
Hence, we compute the average reconstruction loss observed in D∗ before and
after the change,

µ̂D∗

1,t∗ =
1

|D∗|t∗
t∗∑
i=1

∑
j∈D∗

Li,j , µ̂D∗

t∗+1,t =
1

|D∗|(t− t∗)

t∑
i=t∗+1

∑
j∈D∗

Li,j (14)

Springer Nature 2021 LATEX template

12 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

Algorithm 1 Identification of change subspaces.

Require: (x1, x̂1), . . . , (xt, x̂t), t
∗

1: procedure Subspace
2: D∗ ← ∅
3: for all j ∈ 1, . . . , d do
4: s←

(
(xi,j − x̂i,j)2 ∀i ∈ 1, . . . , t

)
5: µ̂j

1,t∗ = 1
t∗

∑t∗

i=1 si, µ̂j
t∗+1,t =

1
t−t∗

∑t
i=t∗+1 si

6: σj
1,t∗ =

√
1
t∗

∑t∗

i=1

(
si − µ̂j

1,t∗

)2
7: σj

t∗+1,t =

√
1

t−t∗

∑t
i=t∗+1

(
si − µ̂j

t∗+1,t

)2
8: pj ← Evaluate Equation (5) ▷ Bernstein score
9: if pj < τ then

10: D∗ ← D∗ ∪ {j}
11: Return D∗

and the standard deviation observed before the change:

σD∗

1,t∗ =

√√√√ 1

t∗

t∗∑
i=1

(
µ̂D∗
i − µ̂D∗

1,t∗

)2
with µ̂D∗

i =
1

|D∗|
∑
j∈D∗

Li,j (15)

We then standard-normalize the average reconstruction loss µ̂D∗

t∗+1 observed
after the change:

∆ =

∣∣µ̂D∗

t∗+1,t − µ̂D∗

1,t∗

∣∣
σD∗
1,t∗

∈ R+ (16)

Intuitively, ∆ is the standard deviation of model’s loss on the new distribution.

4.5 Working with windows

In comparison to most approaches, ABCD evaluates multiple possible change
points within an adaptive time interval [1, . . . , t]. This frees the user from
choosing the window size a-priori and allows to detect changes at variable time
scales. Next, we discuss how to efficiently evaluate those time points.

4.5.1 Maintaining loss statistics online

To avoid recomputing average reconstruction loss values and their variance for
multiple time points every time new observations arrive, we store Welford ag-
gregates A1,k summarizing the stream in the interval [1, . . . , k]. Each aggregate
A1,k is a tuple containing the average reconstruction loss µ̂1,k and the sum of

squared differences ssd1,k = k−1
∑k

j=1 Lj . We store these aggregates for the
time interval [1, . . . , t].

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 13

Creating a new aggregate. Every time a new observation with loss Lt

arrives, we create a new aggregate based on the previous aggregate A1,t−1 =
(µ̂1,t−1, ssd1,t−1) in O(1) using Welford’s algorithm (Knuth, 1997):

µ̂1,t = µ̂1,t−1 +
1

t
(Lt − µ̂1,t−1) (17)

ssd1,t = ssd1,t−1 + (Lt − µ̂1,t−1) (Lt − µ̂1,t) (18)

Computing the statistics. Two aggregates A1,k and A1,t, t > k overlap
in the time interval [1, . . . , k]. We leverage this overlap to derive an aggreg-
ate Ak+1,t = (µ̂k+1,t, ssdk+1,t) representing the time interval [k + 1, . . . , t].
Equation (19) and Equation (20) are based on Chan’s method for combining
variance estimates of non-overlapping samples (Chan et al, 1982).

µ̂k+1,t =
1

t− k (tµ̂1,t − kµ̂1,k) (19)

ssdk+1,t = ssd1,t − ssd1,k −
k(t− k)

t
(µ̂1,k − µ̂k+1,t)

2
(20)

From ssd1,k and ssdk+1,t we can compute the sample variances as follows:

σ2
1,k =

ssd1,k
k − 1

, σ2
k+1,t =

ssdk+1,t

t− k − 1
(21)

Derivation. Given two non-overlapping samples A = {x1, . . . , xm} and B =
{x1, . . . , xn} of a real random variable. Let TA =

∑m
i=1 xi and TB =

∑n
i=1 xi

be the sums of the samples and ssdA =
∑m

i=1(xi − m−1TA)
2 and ssdB =∑n

i=1(xi − n−1TB)
2 be the sums of squared distances from the mean.

For the union of both sets AB = A ∪B we have TAB = TA + TB , which is
equivalent to (m+ n)µ̂AB = mµ̂A + nµ̂B . Solving for µ̂B gives

µ̂B =
m+ n

n
µ̂AB −

m

n
µ̂A. (22)

Substituting n = t − k, m = k, µ̂A = µ̂1,k, µ̂B = µ̂k+1,t, and µ̂1,t = µ̂AB

gives Equation (19); next we derive Equation (20). Chan et al (1982) state:

ssdAB = ssdA + ssdB +
m

n(m+ n)

(n
m
TA − TB

)2
, (23)

which is equivalent to

ssdAB = ssdA + ssdB +
m

n(m+ n)

(
n

(
1

m
TA −

1

n
TB

)
︸ ︷︷ ︸

=µ̂A−µ̂B

)2

. (24)

Springer Nature 2021 LATEX template

14 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

Solving for ssdB , applying the former substitutions, and setting ssdA =
ssd1,k, ssdB = ssdk+1,t, and ssd1,t = ssdAB results in Equation (20).

4.6 Implementation

Algorithm

One can implement ABCD as a recursive algorithm, see Algorithm 2, which
restarts every time a change occurs. We keep a data structureW that contains
the aggregates, instances, and reconstructions. W can either be empty, or, in
the case of a recursive execution, already contain data from the previous run.

Prior to execution, our algorithm must first obtain a model of the current
data from an initial sample of size nmin. If necessary, ABCD allows enough
instances to arrive (lines 5–7). Larger choices of nmin allow for better approx-
imations of the current distribution but delay change detection. Hence our
recommendation is to set nmin as small as possible to still learn the current
distribution; a default of nmin = 100 has worked well for us.

Afterwards, the algorithm trains the model using the instances in W (lines
8–9). ABCD can in principle work with various encoder-decoder models; thus
we deal with tuning the model only on a high level. Nonetheless, we give
recommendations in our sensitivity study later on.

After model training, ABCD detects changes. It reconstructs each new
observation xt+1 (line 11), creates a new aggregate A1,t+1 (line 12), and adds
wt+1 := (A1,t+1, x̂t+1, xt+1) to W (lines 13–14). Our approach then computes
change score p and change point t∗ (lines 15–16). If p < δ, it detects a change.

Once ABCD detects a change, it identifies the corresponding subspace and
evaluates its severity (lines 21–22). Then it adapts W by dropping the out-
dated part of the window (line 23), including all information obtained with the
outdated model. At last, we restart ABCD with the adapted window (line 24).

Discussion

In the worst case our approach consumes linear time and memory because W
grows linearly with t. However, we can simply restrict the size of W to nmax

items for constant memory or evaluate only kmax window splits for constant
runtime. In the latter case we splitW at every t/kmaxth time point. Regarding
nmax, it is beneficial that the remaining aggregates still contain information
about all observations in (1, . . . , t). Hence, ABCD considers the entire past
since the last change even though one restricts the size of W .

ABCD can work with any encoder-decoder model, such as deep neural
networks. However, handling a high influx of new observations faster than
the model’s processing capability can be challenging. Assuming that ψ ◦ ϕ ∈
O(g(d)) for some function g of dimensionality d, the processing time of a single
instance during serial execution is in O (g(d) + kmax). Nevertheless, both the
deep architecture components and the computation of the change score (cf.
Equation 8) can be executed in parallel using specialized hardware.

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 15

Algorithm 2 Adaptive Bernstein Change Detector (ABCD)

Require: The model ψ ◦ ϕ, threshold δ, threshold τ
1: procedure ABCD(W)
2: ψ ◦ ϕ← Null; t← |W | ▷ Model not yet trained
3: while new instance xt+1 do
4: if t < nmin then ▷ Warm up
5: wt+1 ← (−,−, xt+1)
6: W ←W || wt+1

7: else if ψ ◦ ϕ = Null then
8: ψ ◦ ϕ← TrainModel(W)
9: else

10: x̂t+1 ← ψ(ϕ(xt+1)) ▷ Reconstruct
11: At+1 ← update aggregate At with Lt+1

12: W ←W || (At+1, x̂t+1, xt+1)
13: p← Equation (8) ▷ Bernstein score
14: t∗ ← argmink of Equation (8)
15: if p < δ then ▷ A change occurred
16: D∗ ← Subspace(W, t∗, τ)
17: ∆← Severity(W, t∗, D∗)
18: W ← {(−,−, xi) ∀wi ∈W : i > t∗}
19: ABCD(W) ▷ Restart

Dimensionality reduction techniques are often already present in data
stream mining pipelines, for example as a preprocessing step to improve the
accuracy of a classifier (Yan et al, 2006). Reusing an existing dimensionality
reduction model makes it is easy to integrate ABCD into an existing pipeline.

Bernstein’s inequality holds for zero-centered bounded random variables
that take absolute values of at maximumM almost surely. WhileM = 1 serves
as a theoretical upper limit of the zero-centered reconstruction error Lt−E[Lt]
for xt ∈ [0, 1]d, we observe that this theoretical limit is very conservative in
practice (cf. Appendix A.3). In fact, observing an error of 1 corresponds to
an instance and reconstruction of x = [0]d and x̂ = [1]d. This leads us to use
M = 0.1 in our experiments.

5 Experiments

This section describes our experiments and results. We first describe the ex-
perimental setting (Section 5.1). Then we analyze ABCD’s change detection
performance (Section 5.3), its ability to find change subspaces and quantify
change severity (Section 5.4), and its parameter sensitivity (Section 5.5).

5.1 Algorithms

We evaluate ABCD with different encoder-decoder models: (1) Principal Com-
ponent Analysis (PCA) (d′ = ηd), (2) Kernel-PCA (d′ = ηd, RBF-kernel), and

Springer Nature 2021 LATEX template

16 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

Table 2: Evaluated approaches and their parameters.

Algorithm Parameter Values

ABCD model PCA, Kernel PCA, Autoencoders
δ 0.05
η 0, 3, 0.5, 0.7
E† 20, 50, 100
nmin; kmax; τ 100; 20; 2.5

AdwinK k 0.01*, 0.05*, 0.1*, 0.2*, 0.3*, 0.4*, 0.5*

δ 0.05

D3 ω 100*, 250*, 500*

ρ 0.1*, 0.2*, 0.3*, 0.4*, 0.5*

τ 0.6*, 0.7*, 0.8*, 0.9*

model Logistic Regression*, Decision Tree
tree depth 1, 3, 5

IBDD ω 100, 200, 300
m 10, 20, 50, 100

IKS W 100*, 200, 500*

δ 0.05

WATCH‡ ω 500, 1000
κ 100
ϵ 2, 3
µ 1000, 2000

* used or recommended in the respective papers
† only relevant for autoencoders
‡ authors did not recommend parameters for their approach

(3) a standard fully-connected autoencoder model with one hidden ReLU layer
(d′ = ηd) and an output layer with sigmoid activation. For (1) and (2), we rely
on the default scikit-learn implementations. We implement the autoencoder
(3) in pytorch and train it through gradient descent using E epochs and an
Adam optimizer with default parameters according to Kingma and Ba (2015);
see Appendix A.1 for pseudocode of the autoencoder training procedure.

We compare ABCD with AdwinK, IKS, IBDD, WATCH, and D3 (c.f. Sec-
tion 2). We evaluate for each approach a large grid of parameters, shown in
Table 2. Whenever possible, the evaluated grids of hyperparameters for com-
petitors base on recommendations in respective papers. Otherwise, we choose
them based on preliminary experiments. For ABCD, we evaluate larger and
smaller values for δ, η and E to observe our approach’s sensitivity to those
parameters. The choice of τ = 2.5 is our recommended default based on our
sensitivity study in Section 5.5. Last, we set nmin = 100 and kmax = 20,
minimum values that have worked well in preliminary experiments.

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 17

5.2 Datasets

There are not many public benchmark data streams for change detection. Thus
we generate our own from seven real-world (rw) and synthetic (syn) classifica-
tion datasets, similar to (Faber et al, 2021; Faithfull et al, 2019). We simulate
changing data streams2 by sorting the data by label, unless stated otherwise.
If the label changes, a change has occurred. In real-world data streams, the
number of observations between changes depends on each dataset, reported
below. In the synthetic streams, we introduce changes every 2000 observations,
which is a relatively large interval, to assess whether some approaches generate
many false alarms. The generators base on the following datasets:

• HAR (rw): The dataset Human Activity Recognition with Smart-
phones (Anguita et al, 2013) (d = 561) bases on smartphone accelerometer
and gyroscope readings for different actions a person performs. A change
occurs on average every 1768 observations.

• GAS (rw): This data set (Vergara et al, 2011) (d = 128) contains data from
16 sensors exposed to 6 gases at various concentrations. A change occurs on
average every 2265 observations.

• LED (syn): The LED generator samples instances representing a digit on a
seven segment display. It contains 17 additional random dimensions. We add
changes by varying the probability of bit-flipping in the relevant dimensions.

• RBF (syn): The RBF generator (Bifet et al, 2010) starts by drawing a fixed
number of centroids. For each new instance, the generator chooses a centroid
at random and adds Gaussian noise. To create changes, we increment the
seed of the generator resulting in different centroids. We then use samples
from the new generator in a subspace of random size.

• MNIST, FMNIST, and CIFAR (syn): Those data generators sample
from the image recognition datasets MNIST (LeCun et al, 1998), Fashion
MNIST (FMNIST) (Xiao et al, 2017) (d = 784), and CIFAR (Krizhevsky
et al, 2009) (d = 1024, grayscale).

Changes can occur rapidly (“abrupt” or “sudden”) or in time intervals
(“gradual” or “incremental”). The shorter the interval, the more sudden the
change. We vary the interval size between 1 and 300 unless stated otherwise.
Real-world and image data do not have a ground truth for change subspaces
and severity. Thus we generate three additional data streams:

• HSphere (syn): This generator draws from a d∗-dimensional hypersphere
bound to [0, 1] and adds d − d∗ random dimensions. We vary the radius
and center of the hypersphere to introduce changes. The change subspace
contains those dimensions that define the hypersphere.

• Normal-M/V (syn): These generators sample from a d∗-dimensional nor-
mal distribution and add d − d∗ random dimensions. For type M, changes
affect the distribution’s mean, for V we change the distribution’s variance.

2Available at https://github.com/heymarco/AdaptiveBernsteinChangeDetector

https://github.com/heymarco/AdaptiveBernsteinChangeDetector

Springer Nature 2021 LATEX template

18 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

5.3 Change point detection

We use precision, recall, and F1-score to evaluate the performance of the ap-
proaches at detecting changes. We define true positives (TP), false positives
(FP) and false negatives (FN) as follows:

• TP: A change was detected before the next change.
• FN: A change was not detected before the next change.
• FP: A change was detected although no change occurred.

Also, we report the mean time until detection (MTD) indicating the average
number of instances until a change is detected.

0.0

0.5

1.0

F
1

Average CIFAR FMNIST Gas HAR LED MNIST RBF

0.0

0.5

1.0

P
re

c.

0.0

0.5

1.0

R
ec

.

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

10−2

10−1

100

M
T

D
(t

h
o
u

sa
n

d
s)

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

A
B

C
D

(a
e)

A
B

C
D

(k
p

ca
)

A
B

C
D

(p
ca

)
A

d
w

in
K

D
3

IB
D

D
IK

S
W

A
T

C
H

Figure 2: Change Point Detection: Results for different algorithms and data-
sets; each box contains the results for the evaluated grid of parameters.

Figure 2 shows F1-score, precision, recall, and MTD for all datasets and al-
gorithm, as well as a column “Average” that summarizes across datasets. Each
box contains the results for the grid of hyperparameters shown in Table 2. We
see that our approach outperforms its competitors w.r.t. F1-score and preci-
sion. It also is competitive in terms of recall, though it loses against IKS, IBDD,
and WATCH. These approaches seem overly sensitive. The results also indic-
ate that ABCD works well for a wide range of hyperparameters. One reason is
that ABCD uses adaptive windows, thereby eliminating the effect of a window
size parameter (demonstrated in Section 5.6). Another reason is that ABCD
detects changes in reconstruction loss irrespective of the actual quality of the
reconstructions. For instance, Kernel PCA and PCA produce reconstructions
of different accuracy in our experiments. However, for both models, the aver-
age accuracy changes when the stream changes, which is what our algorithm

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 19

Table 3: Results of approaches with their best hyperparameter configuration
w.r.t. F1 score averaged over all data sets.

Approach F1 Prec. Rec. MTD

ABCD (ae) 0.90 0.96 0.87 250
ABCD (kpca) 0.88 0.95 0.84 312
ABCD (pca) 0.73 0.93 0.65 442

AdwinK 0.46 0.48 0.57 400
D3 0.70 0.63 0.82 251
IBDD 0.45 0.30 0.97 396
IKS 0.08 0.04 0.43 24
WATCH 0.69 0.54 1.00 626

detects. Refer to Appendix A.3 for an illustration of the models’ reconstruc-
tion loss over time. Hence, our reported results do not yield information about
the actual accuracy of the underlying encoder-decoder models.

ABCD has a higher MTD than D3, IBDD, and IKS, i.e., it requires more
data to detect changes. However, those competitors are much less conservative
and detect many more changes than exist in the data. Hence they have low
precision but high recall — this leads to a lower MTD.

Table 3 reports the results of all approaches with their best hyperparamet-
ers. WATCH and D3 achieve relatively high F1-score and precision. In fact,
those approaches are our strongest competitors although we still outperform
them by at least 3%. Further, WATCH has an MTD of 626, which is more
than ABCD while D3 and ABCD have a comparable MTD.

ABCD has much higher precision than its competitors. We assume this is
because ABCD (1) leverages the relationships between dimensions, in com-
parison to AdwinK, IKS, or IBDD, and (2) learns those relationships more
effectively than, say, D3 or WATCH. For example, we observed in our ex-
periments that WATCH was frequently unable to accurately approximate the
Wasserstein distance in high-dimensional data.

ABCD has lower recall than most competitors, partly due to their over-
sensitivity. In this regard, our approach might benefit from application-specific
encoder-decoder models that leverage structure in the data, such as spacial
relationships between the pixels of an image, more effectively.

5.4 Change subspace and severity

We now evaluate change subspace identification and change severity estima-
tion. We set d = {24, 100, 500} and vary the change subspace size d∗ randomly
in [1, d] (except for LED, here the subspace always contains dimensions 1–7).
We set the ground truth for the severity to the absolute difference between the
parameters that define the concepts, e.g., the hypersphere-radius in HAR be-
fore and after the change. We report an approach’s subspace detection accuracy
(SAcc.), where true positives (true negatives) represent those dimensions that
were correctly classified as being member (not being member) of the change
subspace. We use Spearman’s correlation between the detected severity and
the ground truth. We also report the F1-score for detecting change points.

Springer Nature 2021 LATEX template

20 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

0.0

1.0

F
1

HSphere Norm.-V Norm.-M LED

0.0

1.0

S
A

cc
.

A
B
C
D

(a
e)

A
B
C
D

(k
pc

a)

A
B
C
D

(p
ca

)

A
dw

in
K D

3

IB
D
D

IK
S

W
AT

C
H

0.0

0.5

S
p

ea
rm

a
n
ρ

A
B
C
D

(a
e)

A
B
C
D

(k
pc

a)

A
B
C
D

(p
ca

)

A
dw

in
K D

3

IB
D
D

IK
S

W
AT

C
H

A
B
C
D

(a
e)

A
B
C
D

(k
pc

a)

A
B
C
D

(p
ca

)

A
dw

in
K D

3

IB
D
D

IK
S

W
AT

C
H

A
B
C
D

(a
e)

A
B
C
D

(k
pc

a)

A
B
C
D

(p
ca

)

A
dw

in
K D

3

IB
D
D

IK
S

W
AT

C
H

Figure 3: Results for evaluating change subspace and severity.

Figure 3 shows our results. As before, each box summarizes the results for
the grid of evaluated hyperparameters. Comparing the two approaches, Ad-
winK and IKS, that monitor each dimension separately, we see that the former
can only detect changes that affect the mean of the marginal distributions (i.e.,
on Norm-M, LED). At the same time, the latter can also detect other changes
(e.g., changes in variance). This is expected since AdwinK compares the mean
in two windows while IKS compares the empirical distributions.

Regarding subspace detection, our approach achieves an accuracy of 0.72
for PCA, 0.78 for autoencoders, and 0.79 for Kernel PCA. AdwinK performs
similarly well when changes affect the mean of the marginal distributions.
Except on LED, IKS performs worse than ABCD and AdwinK, presumbably
because IKS issues an alarm as soon as a single dimension changed.

The estimates of our approach correlate more strongly with the ground
truth than those of competitors, with an average of 0.31 for PCA, 0.36 for
Kernel PCA and 0.37 for Autoencoders. However, we expect more specialized
models to better than our tested models. On LED, PCA-based models ap-
pear to struggle to separate patterns from noise, resulting in poor noise level
estimates and low correlation scores.

5.5 Parameter sensitivity of ABCD

Sensitivity to η

Figure 4a plots F1 for different datasets over η. We observe that the size of the
bottleneck does not significantly impact the change detection performance of
ABCD (ae) and ABCD (kpca). For PCA, however, too large bottlenecks seem
to inhibit change detection on CIFAR, Gas, and MNIST. For those datasets,
we assume that the change occurs along the retained main components, ren-
dering it undetectable; see Appendix A.2 for an illustration. Figure 4b shows
the subspace detection accuracy and Spearman’s ρ. The influence of η on both

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 21

metrics is low. As mentioned earlier, we assume that a change in reconstruc-
tion loss, rather than the quality of reconstruction itself, is crucial for ABCD.
An exception is the LED dataset, on which PCA and Kernel-PCA are unable
to provide a measure that positively correlates with change severity. We hypo-
thesize that those methods struggle to separate patterns from noise, resulting
in poor noise level estimates and low correlation scores.

Sensitivity to E

Figure 4c plots our approach’s performance for different choices of E. Overall,
our approach seems to be robust to the choice of E. On LED, however, larger
choices of E lead to substantial improvements in F1-score. The reason may be
that the autoencoder does not converge to a proper representation of the data
for small E. To avoid this, we recommend choosing E ≥ 50 and to increase
the value if one observes that the model has not yet converged sufficiently.

Sensitivity to τ

Figure 4d investigates how the choice of τ affects the performance of ABCD at
detecting subspaces. Since the change score in Equation (5) provides an upper
bound on the probability that a change occurred, the function can return
values greater than 1, i.e,. in the range (0, 4]. Hence we vary τ in that range
and record the obtained subspace detection accuracy. For all approaches we
achieve optimal accuracy at τ ≈ 2.5. This is probably because some dimensions
could change more severely than others, resulting in variations of the change
scores observed in the different dimensions of the change subspace. Based on
our findings we recommend τ = 2.5 as default.

5.6 Ablation study on window types

Next, we investigate the effect of different window types on change detection
performance. We evaluate those commonly found in change detection literature
(and in our competitors) and couple them with encoder-decoder models and
the probability bound in Equation (5). In particular, we compare: (1) Adaptive
windows (AW), as in ADWIN, AdwinK, and our approach, (2) fixed reference
windows (RW), as in IKS, (3) sliding windows (SW), as in WATCH, and (4)
jumping windows (JW), as in D3. The latter “jump” every ρ|W | instances.

We evaluate the hyperparameters mentioned in Table 2. For example, be-
cause D3 uses jumping windows, we include the evaluated hyperparameters
for D3 in our evaluation of jumping windows. In addition, we extend the grid
with other reasonable choices since we already preselected those in Table 2 for
our competitors in a preliminary study. For ABCD we use η = 0.5 and E = 50.

Table 4 reports the average over all hyperparameter combinations. AWs
yield higher F1-score and recall than other techniques, while precision remains
high (≥ 0.95). SWs have a lower MTD than AWs and hence seem to require
a fewer instances until they detect a change. This is expected: in contrast to
sliding windows, adaptive windows allow the detection of even slight changes
after a longer period of time, resulting in both higher MTD and recall.

Springer Nature 2021 LATEX template

22 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

0.3 0.5 0.7

η

0.0

0.5

1.0

F
1

Average

0.3 0.5 0.7

η

CIFAR

0.3 0.5 0.7

η

RBF

0.3 0.5 0.7

η

FMNIST

0.3 0.5 0.7

η

Gas

0.3 0.5 0.7

η

HAR

0.3 0.5 0.7

η

LED

0.3 0.5 0.7

η

MNIST

ae kpca pca

(a) Influence of η on the identification of changes.

0.0

1.0

S
A

cc
.

Average HSphere Norm.-M Norm.-V LED

0.3 0.5 0.7

η

0.0

0.5

S
p

ea
rm

a
n
ρ

0.3 0.5 0.7

η

0.3 0.5 0.7

η

0.3 0.5 0.7

η

0.3 0.5 0.7

η

(b) Influence of η on the estimation of change subspaces and severity.

Average LED Gas RBF HAR FMNIST MNIST CIFAR

0.5

1.0

F
1

E

20.0

50.0

100.0

(c) Change detection performance of ABCD (ae) depending on E.

0 2 4

τ

0.2

0.5

0.8

A
cc

u
ra

cy

AE

0 2 4

τ

PCA

0 2 4

τ

Kernel-PCA

Normal-V

Normal-M

LED

HSphere

Avg.

(d) Subspace detection accuracy of ABCD depending on τ .

Figure 4: Sensitivity of our approach to its hyperparameters.

5.7 Runtime analysis

5.7.1 Comparison with competitors

Figure 5a shows the mean time per observation (MTPO) of ABCD and its com-
petitors for d ∈ {10, 100, 1000, 10, 000} running single-threaded. The results
are averaged over all evaluated parameters (Table 2). ABCD (id) replaces the
encoder-decoder model with the identity which does not cause overhead. This
allows measuring how much the encoder-decoder model influences ABCD’s

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 23

Table 4: Ablation: Using encoder-decoder models with different window types.

Model Window F1 Prec. Rec. MTD

AE AW 0.83 0.95 0.78 455.6
RW 0.53 1.00 0.21 403.6
SW 0.62 1.00 0.40 207.2
JW 0.52 0.79 0.46 239.1

KPCA AW 0.83 0.99 0.75 309.0
RW 0.56 1.00 0.23 456.3
SW 0.68 1.00 0.49 202.8
JW 0.50 0.77 0.33 266.2

PCA AW 0.72 0.98 0.55 355.3
RW 0.36 1.00 0.09 400.0
SW 0.53 1.00 0.33 206.7
JW 0.46 0.75 0.20 239.9

runtime. The results confirm that the runtime of ABCD alone, i.e, without the
encoding-decoding-process, remains unaffected by a stream’s dimensionality.

We observe that our approach is able to process around 10,000 observations
per second for d ≤ 100. This is more than IKS, WATCH and AdwinK (except
at d = 10) but slower than D3 and IBDD. The reason is that our approach
evaluates kmax possible change points in each time step. In high-dimensional
data, our competitors’ MTPO grows faster than ABCD with PCA or KPCA;
in fact, ABCD (pca) is second fastest after D3 for d ≥ 1000. An exception is
WATCH at d = 10000. This is due to an iteration cap for approximating the
Wasserstein distance restricting the approach’s MTPO.

5.7.2 Runtime depending on window size

Next, we investigate ABCD’s runtime for different choices of kmax and η. We
run this experiment on a single CPU thread. For all three evaluated models, the
encoding-decoding of an observation has a time complexity of O(ηd2); hence,
ABCD’s processing time of one instance is in O(ηd2 + kmax). We therefore
expect a quadratic increase in execution time with dimensionality and a linear
increase with η and kmax when running on a single core.

The results in Figure 5b show the influence of kmax on the execution time:
kmax effectively restricts the MTPO as soon as |W | = kmax. Afterwards,
MTPO remains unaffected by |W |. This also confirms that one can evaluate
different possible change points in constant time using the proposed aggregates.

We show the runtime for different choices of bottleneck-size η in Figure 5c.
η has little influence on the runtime of ABCD with PCA and Kernel-PCA .
However, coupled with an autoencoder (implemented in pytorch) we observe
the expected linear increase in execution time from 0.1ms for η = 0.3 to 0.3ms
for η = 0.7. Considering that change detection performance has shown to
remain stable even for smaller choices of η, we recommend η ≤ 0.5 as default.

Springer Nature 2021 LATEX template

24 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

10−2 10−1 100 101 102

MTPO [ms]

ABCD (ae)
ABCD (id)

ABCD (kpca)
ABCD (pca)

AdwinK
D3

IBDD
IKS

WATCH

d

10

100

1000

10000

(a) Mean time per observation in milliseconds.

0 2000

|W |

0.10

0.20

M
T

P
O

[m
s]

kmax = 10.0

0 2000

|W |

0.00

0.20

0.40

kmax = 100.0

0 2000

|W |

0.00

1.00

2.00

kmax = 1000.0 d

10

100

1000

Approach

ABCD (ae)

ABCD (kpca)

ABCD (pca)

(b) MTPO of ABCD over |W | using E = 50 and η = 0.5 varying kmax.

0 2000

|W |

0.10

0.20

M
T

P
O

[m
s]

η = 0.3

0 2000

|W |

0.10

0.20

η = 0.5

0 2000

|W |

0.10

0.20

0.30

η = 0.7 d

10

100

1000

Approach

ABCD (ae)

ABCD (kpca)

ABCD (pca)

(c) MTPO of ABCD over |W | using E = 50 and kmax = 100 varying η.

Figure 5: Runtime analysis of ABCD.

6 Conclusion

We presented a change detector for high-dimensional data streams, called
ABCD, that monitors the reconstruction loss of an encoder-decoder-model
in an adaptive window with a change score based on Bernstein’s inequality.
Our approach identifies changes and change subspaces, and provides a severity
measure that correlates with the ground truth. Since encoder-decoder models
are already used in many domains (Rani et al, 2022), our approach is widely
applicable. In the future, it would thus be interesting to test ABCD with
application or data specific encoder-decoder models. For example, one might
observe even better performance on streams of image data when applying con-
volutional autoencoders. Last, ABCD could also benefit from a theoretical
analysis of the relationship between changes in data distribution and the loss
of different encoder-decoder models.

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 25

References

Anguita D, Ghio A, Oneto L, et al (2013) A public domain dataset for
human activity recognition using smartphones. In: ESANN, URL https:
//www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf

Bai J, Perron P (2003) Critical values for multiple structural change tests. The
Econometrics Journal 6(1):72–78. https://doi.org/https://doi.org/10.1111/
1368-423X.00102

Bernstein SN (1924) On a modification of Chebyshev’s inequality and of the
error formula of Laplace. Ann. Sci. Inst. Savantes Ukraine, Sect. Math.

Bifet A, Gavaldà R (2007) Learning from time-changing data with ad-
aptive windowing. In: Proceedings of the Seventh SIAM International
Conference on Data Mining. SIAM, pp 443–448, https://doi.org/10.1137/1.
9781611972771.42

Bifet A, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data
streams. In: ECML PKDD, Lecture Notes in Computer Science, vol 6321.
Springer, pp 135–150, https://doi.org/10.1007/978-3-642-15880-3 15

Boucheron S, Lugosi G, Massart P (2013) Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, https:
//doi.org/10.1093/acprof:oso/9780199535255.001.0001

Ceci M, Corizzo R, Japkowicz N, et al (2020) ECHAD: Embedding-based
change detection from multivariate time series in smart grids. IEEE Access
8:156,053–156,066. https://doi.org/10.1109/ACCESS.2020.3019095

Chakar S, Lebarbier E, Lévy-Leduc C, et al (2017) A robust approach
for estimating change-points in the mean of an AR(1) process. Bernoulli
23(2):1408 – 1447. https://doi.org/10.3150/15-BEJ782

Chan TF, Golub GH, LeVeque RJ (1982) Updating formulae and a pairwise
algorithm for computing sample variances. Tech. rep., Heidelberg

Chaudhuri A, Fellouris G, Tajer A (2021) Sequential change detection of a
correlation structure under a sampling constraint. In: ISIT, pp 605–610,
https://doi.org/10.1109/ISIT45174.2021.9517736

Dasu T, Krishnan S, Venkatasubramanian S, et al (2006) An information-
theoretic approach to detecting changes in multi-dimensional data streams.
In: Proc. Symposium on the Interface of Statistics, Computing Science, and
Applications (Interface)

Faber K, Corizzo R, Sniezynski B, et al (2021) WATCH: Wasserstein change
point detection for high-dimensional time series data. In: Big Data. IEEE,

https://www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2013-84.pdf
https://doi.org/https://doi.org/10.1111/1368-423X.00102
https://doi.org/https://doi.org/10.1111/1368-423X.00102
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1109/ACCESS.2020.3019095
https://doi.org/10.3150/15-BEJ782
https://doi.org/10.1109/ISIT45174.2021.9517736

Springer Nature 2021 LATEX template

26 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

pp 4450–4459, https://doi.org/10.1109/BigData52589.2021.9671962

Faithfull WJ, Diez JJR, Kuncheva LI (2019) Combining univariate approaches
for ensemble change detection in multivariate data. Inf Fusion 45:202–214.
https://doi.org/10.1016/j.inffus.2018.02.003

Fouché E, Komiyama J, Böhm K (2019) Scaling multi-armed bandit al-
gorithms. In: SIGKDD. ACM, pp 1449–1459, https://doi.org/10.1145/
3292500.3330862

Garreau D, Arlot S (2018) Consistent change-point detection with kernels.
Electronic Journal of Statistics 12(2):4440–4486. URL https://hal.science/
hal-01416704

Goldenberg I, Webb GI (2019) Survey of distance measures for quantifying
concept drift and shift in numeric data. Knowl Inf Syst 60(2):591–615. https:
//doi.org/10.1007/s10115-018-1257-z

Gözüaçık O, Büyükçakır A, Bonab H, et al (2019) Unsupervised concept drift
detection with a discriminative classifier. In: CIKM. ACM, p 2365–2368,
https://doi.org/10.1145/3357384.3358144

Gretton A, Borgwardt KM, Rasch MJ, et al (2012) A kernel two-sample test.
J Mach Learn Res 13:723–773. https://doi.org/10.5555/2503308.2188410

Harchaoui Z, Cappe O (2007) Retrospective mutiple change-point estimation
with kernels. In: IEEE/SP 14th Workshop on Statistical Signal Processing,
pp 768–772, https://doi.org/10.1109/SSP.2007.4301363

Impedovo A, Ceci M, Calders T (2019) Efficient and accurate non-exhaustive
pattern-based change detection in dynamic networks. Lecture notes in com-
puter science, vol 11828. Springer, pp 396–411, https://doi.org/10.1007/
978-3-030-33778-0 30

Impedovo A, Loglisci C, Ceci M, et al (2020a) Condensed representations of
changes in dynamic graphs through emerging subgraph mining. Engineering
Applications of Artificial Intelligence 94:103,830. https://doi.org/10.1016/j.
engappai.2020.103830

Impedovo A, Mignone P, Loglisci C, et al (2020b) Simultaneous process drift
detection and characterization with pattern-based change detectors. Lecture
notes in computer science, vol 12323. Springer, pp 451–467, https://doi.org/
10.1007/978-3-030-61527-7 30

Iwashita AS, Papa JP (2019) An overview on concept drift learning. IEEE
Access 7:1532–1547. https://doi.org/10.1109/ACCESS.2018.2886026

https://doi.org/10.1109/BigData52589.2021.9671962
https://doi.org/10.1016/j.inffus.2018.02.003
https://doi.org/10.1145/3292500.3330862
https://doi.org/10.1145/3292500.3330862
https://hal.science/hal-01416704
https://hal.science/hal-01416704
https://doi.org/10.1007/s10115-018-1257-z
https://doi.org/10.1007/s10115-018-1257-z
https://doi.org/10.1145/3357384.3358144
https://doi.org/10.5555/2503308.2188410
https://doi.org/10.1109/SSP.2007.4301363
https://doi.org/10.1007/978-3-030-33778-0_30
https://doi.org/10.1007/978-3-030-33778-0_30
https://doi.org/10.1016/j.engappai.2020.103830
https://doi.org/10.1016/j.engappai.2020.103830
https://doi.org/10.1007/978-3-030-61527-7_30
https://doi.org/10.1007/978-3-030-61527-7_30
https://doi.org/10.1109/ACCESS.2018.2886026

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 27

Jaworski M, Rutkowski L, Angelov P (2020) Concept drift detection using
autoencoders in data streams processing. In: ICAISC. Springer-Verlag, p
124–133, https://doi.org/10.1007/978-3-030-61401-0 12

Jiao Y, Chen Y, Gu Y (2018) Subspace change-point detection: A new
model and solution. IEEE Journal of Selected Topics in Signal Processing
12(6):1224–1239. https://doi.org/10.1109/JSTSP.2018.2873147

de Jong KL, Bosman AS (2019) Unsupervised change detection in satellite
images using convolutional neural networks. In: IJCNN 2019. IEEE, pp 1–8,
https://doi.org/10.1109/IJCNN.2019.8851762

Khamassi I, Sayed Mouchaweh M, Hammami M, et al (2015) Self-adaptive
windowing approach for handling complex concept drift. Cogn Comput
7(6):772–790. https://doi.org/10.1007/s12559-015-9341-0

Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Asso-
ciation 107(500):1590–1598. https://doi.org/10.1080/01621459.2012.737745

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In:
ICLR, URL http://arxiv.org/abs/1412.6980

Knuth DE (1997) The Art of Computer Programming: Seminumerical Al-
gorithms, vol 2. Addison-Wesley

Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of features from
tiny images. Tech. rep.

Lajugie R, Bach FR, Arlot S (2014) Large-margin metric learning for con-
strained partitioning problems. In: ICML, JMLR Workshop and Conference
Proceedings, vol 32. JMLR.org, pp 297–305, URL http://proceedings.mlr.
press/v32/lajugie14.html

LeCun Y, Cortes C, Burges C (1998) The MNIST database of handwritten
digits. Retrieved from http://yann.lecun.com/exdb/mnist/

Lee JA, Verleysen M (2007) Nonlinear Dimensionality Reduction. Springer,
https://doi.org/10.1007/978-0-387-39351-3

Liu A, Song Y, Zhang G, et al (2017) Regional concept drift detection and
density synchronized drift adaptation. In: IJCAI. ijcai.org, pp 2280–2286,
https://doi.org/10.24963/ijcai.2017/317

Liu P, Wang J, Wang Z, et al (2019) High-dimensional data abnormity de-
tection based on improved Variance-of-Angle (VOA) algorithm for electric
vehicles battery. In: 2019 IEEE energy conversion congress and exposition

https://doi.org/10.1007/978-3-030-61401-0_12
https://doi.org/10.1109/JSTSP.2018.2873147
https://doi.org/10.1109/IJCNN.2019.8851762
https://doi.org/10.1007/s12559-015-9341-0
https://doi.org/10.1080/01621459.2012.737745
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v32/lajugie14.html
http://proceedings.mlr.press/v32/lajugie14.html
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-0-387-39351-3
https://doi.org/10.24963/ijcai.2017/317

Springer Nature 2021 LATEX template

28 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

(ECCE), pp 5072–5077, https://doi.org/10.1109/ECCE.2019.8912777

Loglisci C, Ceci M, Impedovo A, et al (2018) Mining microscopic and mac-
roscopic changes in network data streams. Knowl Based Syst 161:294–312.
https://doi.org/10.1016/j.knosys.2018.07.011

Lu J, Liu A, Dong F, et al (2019) Learning under concept drift: A review.
IEEE Trans Knowl Data Eng 31(12):2346–2363. https://doi.org/10.1109/
TKDE.2018.2876857

Lung-Yut-Fong A, Lévy-Leduc C, Cappé O (2015) Homogeneity and change-
point detection tests for multivariate data using rank statistics. Journal de
la Société Française de Statistique 156(4):133–162

Matteson DS, James NA (2014) A nonparametric approach for multiple
change point analysis of multivariate data. Journal of the American Statist-
ical Association 109(505):334–345. https://doi.org/10.1080/01621459.2013.
849605

Montiel J, Read J, Bifet A, et al (2018) Scikit-multiflow: A multi-
output streaming framework. JMLR 19(1):2915–2914. URL http://jmlr.org/
papers/v19/18-251.html

Mowbray M, Savage T, Wu C, et al (2021) Machine learning for biochemical
engineering: A review. Biochemical Engineering Journal 172:108,054. URL
https://www.sciencedirect.com/science/article/pii/S1369703X21001303

Naseer S, Ali RF, Dominic PDD, et al (2020) Learning representations of
network traffic using deep neural networks for network anomaly detection: A
perspective towards oil and gas IT infrastructures. Symmetry 12(11):1882.
https://doi.org/10.3390/sym12111882

Page ES (1954) Continuous inspection schemes. Biometrika 41(1-2):100–115.
https://doi.org/10.1093/biomet/41.1-2.100

Pears R, Sakthithasan S, Koh YS (2014) Detecting concept change in dy-
namic data streams. Machine Learning 97(3):259–293. https://doi.org/10.
1007/s10994-013-5433-9

Qahtan AA, Alharbi B, Wang S, et al (2015) A PCA-based change detection
framework for multidimensional data streams: Change detection in mul-
tidimensional data streams. In: SIGKDD. ACM, New York, NY, USA, p
935–944, https://doi.org/10.1145/2783258.2783359

Rani R, Khurana M, Kumar A, et al (2022) Big data dimensionality reduction
techniques in IoT: review, applications and open research challenges. Cluster
Computing 25(6):4027–4049. https://doi.org/10.1007/s10586-022-03634-y

https://doi.org/10.1109/ECCE.2019.8912777
https://doi.org/10.1016/j.knosys.2018.07.011
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1080/01621459.2013.849605
https://doi.org/10.1080/01621459.2013.849605
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
https://www.sciencedirect.com/science/article/pii/S1369703X21001303
https://doi.org/10.3390/sym12111882
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1007/s10994-013-5433-9
https://doi.org/10.1007/s10994-013-5433-9
https://doi.org/10.1145/2783258.2783359
https://doi.org/10.1007/s10586-022-03634-y

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 29

dos Reis DM, Flach PA, Matwin S, et al (2016) Fast unsupervised online drift
detection using incremental Kolmogorov-Smirnov test. In: SIGKDD. ACM,
pp 1545–1554, https://doi.org/10.1145/2939672.2939836

Shewhart WA (1930) Economic Quality Control of Manufactured Product,
vol 9. https://doi.org/https://doi.org/10.1002/j.1538-7305.1930.tb00373.x

de Souza VMA, Chowdhury FA, Mueen A (2020) Unsupervised drift detection
on high-speed data streams. In: BigData. IEEE, pp 102–111, https://doi.
org/10.1109/BigData50022.2020.9377880

Sun Y, Wang Z, Liu H, et al (2016) Online ensemble using adaptive window-
ing for data streams with concept drift. Int J Distributed Sens Networks
12(5):4218,973:1–4218,973:9. https://doi.org/10.1155/2016/4218973

Suryawanshi S, Goswami A, Patil P, et al (2022) Adaptive windowing based
recurrent neural network for drift adaption in non-stationary environment.
Journal of Ambient Intelligence and Humanized Computing https://doi.org/
10.1007/s12652-022-04116-0

Truong C, Oudre L, Vayatis N (2020) Selective review of offline change point
detection methods. Signal Process 167. https://doi.org/10.1016/j.sigpro.
2019.107299

Vergara A, Huerta R, Ayhan T, et al (2011) Gas sensor drift mitigation using
classifier ensembles. In: Proceedings of the Fifth International Workshop on
Knowledge Discovery from Sensor Data. ACM, SensorKDD ’11, p 16–24,
https://doi.org/10.1145/2003653.2003655

Vrigkas M, Nikou C, Kakadiaris IA (2015) A review of human activity recog-
nition methods. Frontiers Robotics AI 2:28. https://doi.org/10.3389/frobt.
2015.00028

Webb GI, Lee LK, Goethals B, et al (2018) Analyzing concept drift and shift
from sample data. Data Min Knowl Discov 32(5):1179–1199. https://doi.
org/10.1007/s10618-018-0554-1

Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. CoRR abs/1708.07747. URL
http://arxiv.org/abs/1708.07747

Xie L, Xie Y, Moustakides GV (2020) Sequential subspace change point detec-
tion. Sequential Analysis 39(3):307–335. https://doi.org/10.1080/07474946.
2020.1823191

https://doi.org/10.1145/2939672.2939836
https://doi.org/https://doi.org/10.1002/j.1538-7305.1930.tb00373.x
https://doi.org/10.1109/BigData50022.2020.9377880
https://doi.org/10.1109/BigData50022.2020.9377880
https://doi.org/10.1155/2016/4218973
https://doi.org/10.1007/s12652-022-04116-0
https://doi.org/10.1007/s12652-022-04116-0
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1145/2003653.2003655
https://doi.org/10.3389/frobt.2015.00028
https://doi.org/10.3389/frobt.2015.00028
https://doi.org/10.1007/s10618-018-0554-1
https://doi.org/10.1007/s10618-018-0554-1
http://arxiv.org/abs/1708.07747
https://doi.org/10.1080/07474946.2020.1823191
https://doi.org/10.1080/07474946.2020.1823191

Springer Nature 2021 LATEX template

30 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

Yan J, Zhang B, Liu N, et al (2006) Effective and efficient dimensionality
reduction for large-scale and streaming data preprocessing. IEEE Transac-
tions on Knowledge and Data Engineering 18(3):320–333. https://doi.org/
10.1109/TKDE.2006.45

Zhao X, Wu J, Shi Y, et al (2018) Fault diagnosis of motor in frequency domain
signal by stacked de-noising auto-encoder. Computers, Materials & Continua
57(2):223–242. URL http://www.techscience.com/cmc/v57n2/22968

https://doi.org/10.1109/TKDE.2006.45
https://doi.org/10.1109/TKDE.2006.45
http://www.techscience.com/cmc/v57n2/22968

Springer Nature 2021 LATEX template

Adaptive Bernstein Change Detector for High-Dimensional Data Streams 31

A Appendix

A.1 Training of autoencoder

Algorithm 3 describes the training of the autoencoder model as done in our
experiments. First, we collect the training data from the current window W
(line 2). Afterwards we perform gradient descent on Xtrain for E epochs at a
learning rate of lr.

Algorithm 3 Autoencoder training

Require: W , learning rate lr, number of training epochs E
1: procedure TrainAE(W, lr, E)
2: Xtrain ← {xi ∀ (−,−, xi) ∈W}
3: ϕ, ψ ← NewEncoder(), NewDecoder()
4: for all epochs E do
5: GradientDescent(ψ ◦ ϕ,Xtrain, lr)

6: Return ϕ, ψ

A.2 Detectable and undetectable change for ABCD (pca)

This section illustrates under which conditions one can use principal compon-
ent analysis to detect change. Figure 6 shows data from two distributions: black
points (e.g., before the change) plus the associated main principle component,
and blue points (e.g., after the change). On the left, the change affects the cor-
relation between Dim. 1 and Dim. 2. This leads to an increased reconstruction
error for the points highlighted in blue. On the right, the change occurs along
the main principle component. I.e., the variance along the main principle com-
ponent has increased. Such kind of change is undetectable by ABCD (pca) as
the reconstruction error remains unchanged.

D
im

.
2

Detectable change Undetectable change

Dim. 1 Dim. 1

Figure 6: Illustration of detectable and undetectable change using PCA.

Springer Nature 2021 LATEX template

32 Adaptive Bernstein Change Detector for High-Dimensional Data Streams

A.3 Reconstruction loss over time

Figure 7 shows the reconstruction loss of the evaluated encoder-decoder mod-
els over the length of the stream. We observe that indeed the reconstruction
loss decreases with increasing bottleneck size (controlled by η), and with in-
creasing number of training epochs E (first three columns). Further, we see
that regardless of E, η, or the type of model, the reconstruction loss typically
changes after a change point. After the change was detected, ABCD learns the
new concept, which mostly leads to a decrease in reconstruction loss. Last, we
observe that the theoretical limit ofM = 1 for the absolute difference between
the reconstruction loss and its expected value is overly conservative. A value
of M = 0.1 seems to be a more realistic choice.

3
4
5

C
IF

A
R

×10−2

AE, E = 20.0

2

4

×10−2

AE, E = 50.0

2

4
×10−2

AE, E = 100.0

0.5

1.0

×10−2

PCA

4

6

×10−2

KPCA

0.5

1.0

F
M

N
IS

T

×10−1

0.5

1.0
×10−1

2.5

5.0

7.5

×10−2

0

2

×10−2

0.75

1.00

×10−1

0.5

1.0

G
as

×10−1

1

2

3
×10−2

1

2

×10−2

0

1

×10−3

1

2
×10−2

2.5

5.0

H
A

R

×10−2

2

4
×10−2

1

2

×10−2

0

5

×10−3

2.5

5.0
×10−2

2.4

2.5

L
E

D

×10−1

2.3

2.4

2.5

×10−1

2.25

2.50
×10−1

1

2
×10−1

1

2

×10−1

6

8

M
N

IS
T

×10−2

5.0

7.5
×10−2

2.5

5.0

×10−2

0

2
×10−2

6

8
×10−2

2500 5000

3.5
4.0
4.5

R
B

F

×10−2

2500 5000

2

4
×10−2

2000 4000

1
2
3

×10−2

2500 5000
0

1

×10−2

2500 5000
3

4

×10−2

Stream length

M
S

E

η = 0.3 η = 0.5 η = 0.7 Change point

Figure 7: Reconstruction loss over the length of the stream.

	Introduction
	Related work
	Change detector types
	Univariate change detection
	Multivariate change detection
	Offline change point detection
	Change subspace
	Change severity
	Pattern based change detection
	Competitors

	Preliminaries
	Approach
	Principle of ABCD
	Detecting the change point
	Choice of parameter
	Minimum sample sizes and outlier sensitivity

	Detecting the change subspace
	Quantifying change severity
	Working with windows
	Maintaining loss statistics online

	Implementation
	Algorithm
	Discussion

	Experiments
	Algorithms
	Datasets
	Change point detection
	Change subspace and severity
	Parameter sensitivity of name
	Sensitivity to
	Sensitivity to E
	Sensitivity to

	Ablation study on window types
	Runtime analysis
	Comparison with competitors
	Runtime depending on window size

	Conclusion
	Appendix
	Training of autoencoder
	Detectable and undetectable change for ABCD (pca)
	Reconstruction loss over time

