
Multi-Kernel Times Series Outlier Detection

Florian Kalinke[0000−0002−0443−6288], Edouard Fouché[0000−0003−0157−7648],
Haiko Thiessen, and Klemens Böhm

Karlsruhe Institute of Technology (KIT)
florian.kalinke@kit.edu, edouard.fouche@kit.edu, haikothiessen@gmail.com,

klemens.boehm@kit.edu

Abstract. Time series are sequences of observations ordered by time.
Detecting outliers in a set of time series is very important for many use
cases, including fraud detection and predictive maintenance. However,
this task continues to be difficult: First, time series may be of different
lengths and conventional distance measures like the Euclidean distance
can not capture their similarity well. Workarounds like feature engineer-
ing require domain knowledge and render solutions domain-specific. Sec-
ond, many existing techniques are supervised, but training labels are
expensive if not impossible to obtain. In this paper, we propose Multi-
Kernel Times Series Outlier Detection (MK-TSOD), a method that com-
bines the Fourier Transform, Global Alignment Kernels, and Multiple
Kernel Learning with Support Vector Data Description. We describe its
specifics, and show that MK-TSOD outperforms existing methods on
standard benchmark data.

Keywords: Time Series · Outlier Detection · Global Alignment Kernel
· Fourier Transform · Support Vector Data Description.

1 Introduction

Outlier detection is of fundamental importance for many real-world applications,
such as fraud detection or predictive maintenance. In such settings, data is often
collected over time; the data has the form of time series. In the literature on time
series, “outlier” either refers to anomalous subsequences [24] or to anomalous full
sequences [14]. This article addresses the latter, that is, detecting few outlying
time series from a set of time series.

Outlier detection in time series continues to be challenging, for two reasons:
(1) First, most outlier detection algorithms rely on a notion of distance to
quantify data dissimilarity. Yet, time series may have different lengths and be

This version of the contribution has been accepted for publication, after peer review
but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: https://doi.org/
10.1007/978-3-031-45275-8_46. Use of this Accepted Version is subject to the
publisher’s Accepted Manuscript terms of use https://www.springernature.com/

gp/open-research/policies/accepted-manuscript-terms.

https://doi.org/10.1007/978-3-031-45275-8_46
https://doi.org/10.1007/978-3-031-45275-8_46
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

shifted in time, which makes classic distance measures (e.g., the Euclidean dis-
tance) inadequate. As a workaround, many existing techniques rely on extracted
features instead of directly comparing the series by a distance measure. However,
extracting features limits the applicability of respective algorithms and gener-
ally leads to a loss of information. (2) Second, the outlier detection problem is
unsupervised in nature and typically imbalanced, that is, outliers are rare, so
that optimizing the parameters of outlier detectors is hardly feasible in practice.

One common way to tackle both problems is using dynamic time warp-
ing (DTW; [20]) together with Support Vector Data Description (SVDD; [23]).
SVDD is a kernel-based approach that encloses a predefined share of the data
within a hypersphere of minimal volume; points outside the sphere are outliers.
The kernel function quantifies the dissimilarity of the data in an implicit feature
space. However, DTW does not yield a valid kernel function; the theory [21,22]
supporting support vector-based approaches does not hold when using DTW
with SVDD [8].

In this paper, we propose a kernel-based method for time series outlier de-
tection that addresses all challenges identified above:

We propose Multi-Kernel Time Series Outlier Detection (MK-
TSOD). Our idea is to combine SVDD with multiple kernels, which can capture
frequency information of time series with fast Fourier transform, and time in-
formation with Global Alignment Kernels (GAK; [8]). Unlike DTW, GAK is
guaranteed to work with SVDD. We combine the time and frequency informa-
tion in an optimal way with Multiple Kernel Learning (MKL; [18]). MK-TSOD
has one parameter, the expected outlier ratio, which is intuitive to set.

We run extensive experiments on standard benchmark data. They reveal
that the proposed method outperforms the existing approaches on 9 out of 15
data sets with the balanced accuracy metric. We release the implementation
together with our experiments on GitHub.1

Paper outline: Section 2 presents related work. Section 3 presents the def-
initions and the existing elements our method uses. Section 4 introduces the
proposed approach. The experiments are in Section 5, and Section 6 concludes.

2 Related Work

While outlier detection has been well addressed for numerous types of data, e.g.,
numerical, categorical, mixed, or text data, detecting outliers from time series
remains particularly challenging.

Due to the lack of proper distance measures for time series, most outlier
detectors use extracted features instead. Examples are Highest Density Regions
(HDR; [15]), and α-hull [15]: HDR extracts features of the time series and then
applies Principal Component Analysis (PCA) to project the features to the first
two principal components. It then estimates the local density of each observation.
Observations whose density is below a threshold are the outliers. α-hull is similar

1 https://github.com/flopska/mk-tsod/

https://github.com/flopska/mk-tsod/

to HDR as it also uses PCA. However, instead of using a density-based approach,
it relies on α-convex hulls. Both algorithms use the same set of extracted features.

Finding a good set of features tends to be difficult. Established approaches
to find such sets are either expert- or algorithm-based. The expert-based ones
are costly and require domain knowledge. The algorithm-based ones, e.g., [6,16],
only target classification and regression, i.e., supervised settings.

DOTS (Detection of Outlier Time Series; [3]) does not rely on extracted fea-
tures, but clusters the data based on DTW and then uses the entropy to find an
optimal positioning of cluster centers. It ranks the “outlierness” of observations
based on their distances to the clusters. DOTS has more free parameters than
our approach, and several of them are difficult to optimize in an unsupervised
setting, e.g., the regularization parameter λ and the number of clusters k.

ADSL (Anomaly Detection algorithm with shapelet-based Feature Learning;
[2]) is so far the approach most related to ours, as it also bases on SVDD. The
main difference is that ADSL applies SVDD to a learned intermediate repre-
sentation, namely shapelets, but not explicitly to time series data, as we do. It
then classifies outliers based on their distance to the shapelets. However, this
approach is only successful in cases where shapelets are indeed a meaningful
representation.

The DeepSVDD [19] approach combines ideas from neural networks with the
outlier detection paradigm of SVDD, that is, it learns a hypersphere encom-
passing the networks representation of most observations with minimal volume.
— Similarly to SVDD, DeepSVDD labels points outside this sphere as outliers.
However, the algorithm is limited to data with fixed length and thus not appli-
cable to time series.

While theoretically unsound, support vector-based approaches with DTW-
based kernels can work in practice [13]. DTW-SVDD, ADSL, DOTS, HDR, and
α-hull form a set of strong baselines against which we compare in Section 5.

3 Background

This section summarizes the definitions (Section 3.1). To render the article fully
self-contained, we recall SVDD (Section 3.2), and GAK (Section 3.3).

3.1 Definitions

A function k : X × X → R is a kernel on an input space X if there exists a real
Hilbert space H and a map φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉 for
all x, x′ ∈ X . We call φ the feature map and H the feature space of k [22]. The
corresponding Gram matrix for a subset {x1, . . . , xl} ⊆ X is the symmetric l× l
matrix Kk = [k(xi, xj)]

l
i,j=1 ∈ Rl×l.

A time series x with length n is a sequence x := (xm)nm=1 with xm ∈ R for
m = 1, . . . , n. In what follows, we consider the input space X = {x1, . . . , xl}, i.e.,
a set of l time series with potentially different lengths. The proposed method is

straightforward to extend to RD (D ∈ N), but for clarity, we consider observa-
tions taking values in R in what follows.

With those definitions, detecting outlying time series can be seen as finding
the l · θ time series that are the most dissimilar within a set of time series X ,
where the parameter θ ∈ (0, 1) specifies the expected ratio of outliers in that set.
Since outliers are rare, θ is typically small.

3.2 Support Vector Data Description (SVDD)

The construction of SVDD is similar to the well-known SVM (Support-Vector
Machine; [7]). In short, the goal is to solve the constrained optimization problem

minR2 + C
l∑
i=1

ξi, s.t. ‖φ(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0,

for i = 1, . . . , l, that is, to find a sphere with center a and radius R2 so that most
observations are enclosed. The slack variables ξi allow points to lie outside the
sphere with a penalty controlled by parameter C. [23] recommends setting

C = 1/(l · θ), (1)

where θ is the expected ratio of outliers in the data, and l the size of the data
set. Hence, θ can be chosen intuitively. The corresponding dual problem is

max
α

l∑
i=1

αik(xi, xi)−
l∑

i,j=1

k(xi, xj),

s.t.

l∑
i=1

αi = 1, 0 ≤ αi ≤ C,

(2)

for all i = 1, . . . , l and with Lagrange multipliers α = (α1, . . . , αl)
T.

Having obtained a solution to (2), a time series z ∈ X is an outlier if and
only if

‖φ(z)− a‖2 = k(z, z)− 2

l∑
i=1

αik(z, xi) +

l∑
i,j=1

αiαjk(xi, xj) > R2, (3)

with the radius R2 computed as

R2 = k(xk, xk)− 2

l∑
i=1

αik(xi, xk) +

l∑
i,j=1

αiαjk(xi, xk), (4)

with any xk ∈ X for which the corresponding Lagrange multiplier αk fulfills
0 < αk < C.

3.3 Global Alignment Kernels (GAK)

GAKs [8] extend DTW to the kernel setting. The definition of GAK bases on
the notion of alignment: An alignment π of length p between x, y ∈ X of lengths
n, n′ is a pair (π1, π2) that fulfills the following conditions:

Boundary & Monotonicity. The first observation in x must map to the first
observation in y and analogously for the last observations. Also, the align-
ment must be increasing. Formally, one has

1 = π1(1) ≤ · · · ≤ π1(p) = n,

1 = π2(1) ≤ · · · ≤ π2(p) = n′.
(5)

Continuity. There must not be any gap in the alignment path, i.e., each obser-
vation must map to at least one other observation. Further, there must not
be any repetition. Formally, for all 1 ≤ i, j ≤ p− 1,

π1(i+ 1) ≤ π1(i) + 1, π2(j + 1) ≤ π2(j) + 1,

(π1(i+ 1)− π1(i)) + (π2(i+ 1)− π2(i)) ≥ 1.
(6)

Adjustment Window. Given an observation xi ∈ R, i = 1, . . . , n of time
series x ∈ X and parameter T , xi must map to an observation yi ∈ R, i =
1, . . . , n′ of y ∈ X that is “sufficiently close”, i.e., strictly less than T steps
away and vice versa. Formally, for all 1 ≤ i ≤ p− 1

|π1(i)− π2(i)| < T. (7)

While not strictly necessary, the adjustment window condition speeds up the
computation by reducing the number of alignments considered without impact-
ing result quality by much [8]; we confirm this in our experiments.

The kernel kGAK sums all distances computed over alignments that satisfy
(5), (6), and (7):

kGAK (x, y) =
∑

(x′,y′)∈M(n,n′)

k(x′, y′), (8)

with M(n, n′) = {(x′π1
, y′π2

) | π = (π1, π2) ∈ A(n, n′)}, where A(n, n′) is the

set of all valid alignments, and where k(x′π1
, y′π2

) =
∏|π|
i=1 κ(x′π1(i)

, y′π2(i)
) for a

so-called local kernel κ.
[8] shows that kGAK is not positive definite for all such κ. This is problematic,

as (2) is then non-convex, and the global optimum might be not be found.
Additionally, the theory that supports kernel functions does not hold in such
cases. However, [8] proves that κ/(1 + κ) being positive definite is a sufficient
condition to guarantee that kGAK is positive definite and show that this holds
for the local kernel,

κ(x, y) = exp

{
−‖x− y‖

2

2σ2
− log

(
2− e−

‖x−y‖2

2σ2

)}
,

where, by abuse of notation, x, y ∈ R in our case, and ‖·‖ the Euclidean distance.
In turn, DTW is defined as the minimum distance over all valid alignments

DTW(x, y) = min
π∈A(n,n′)

|π|∑
i=1

∥∥xπ1(i) − yπ2(i)

∥∥2 , x, y ∈ X ,

with the corresponding DTW kernel

kDTW (x, y) = exp {−γ ·DTW(x, y)} . (9)

As DTW does not fulfill the triangle inequality, the kernel kDTW is not guaran-
teed to be positive definite, a problem one avoids with GAK.

GAK and DTW have a recursive formulation that one can compute with
dynamic programming. So their complexity when comparing two time series
of lengths n and n′ and dimensionality d is O(dnn′). As GAK only considers
alignments within a band of width T , its runtime reduces to O(dT min(n, n′)).

GAK and DTW only consider the time information of the respective time
series. But it is known that considering the frequency information can prove
beneficial when working with time series. The proposed method that we present
next builds upon this observation.

4 Multi-Kernel Time Series Outlier Detection

Depending on the characteristics of a time signal that one wishes to highlight,
it is common to represent the signal in the time or in the frequency domain. Ac-
cordingly, we propose a kernel kFFT (Section 4.1) that considers similarities in
the frequency domain, which we then combine with kGAK in an optimal fashion
with Multiple Kernel Learning (MKL; [18]). This guarantees that the proposed
method (Section 4.2) detects outliers by taking both time and frequency in-
formation into account. We analyze the runtime complexity of MK-TSOD in
Section 4.3.

4.1 Fast Fourier Transform Kernels

The Fourier transformation of a time series x = (xm)nm=1 is the sequence X =
(Xk)nk=1 of the Fourier coefficients

Xk =

n∑
m=1

xm exp

{
−2πi

(k − 1)(m− 1)

n

}
, k = 1, . . . , n,

with i2 = −1 the imaginary number. Let x, y ∈ X be time series of lengths
n, n′, having Fourier coefficients X = (Xk)nk=1, Y = (Yk)n

′

k=1, respectively. To
compare x and y, we propose kFFT as a modified Gaussian kernel that truncates
the sequence of Fourier coefficients, that is,

kFFT (x, y) := exp

−γ
t∑

j=1

(Xj − Yj)2
 , (10)

Collection of

{xi}mi=1, xi ∈ R

Input data

1. Compute Similarity
Matrices

l × l

l × l

kFFT (x5, x5)

kGAK (x5, x5)

k1,2 : Rm × Rm′ → R

2. Multiple Kernel
Learning

kGAKkFFT

Our Method

Outlier

{xi}mi=1 → {0, 1}

Output

(1)

(2)

w = MKL(kFFT , kGAK)

1

2

3

4

l

. . .

Time Series

. . .

Detection

!

(1 − w) +w

SVDD 1

2

3

4

l
Time

Frequency

Fig. 1: Schematic representation of the proposed outlier detection method.

with smoothing parameter γ, and 1 ≤ t ≤ min(n, n′). Hence, parameter t con-
trols the quality of the approximation by restricting the number of coefficients.

To select the bandwidth parameter γ in an unsupervised fashion, we use
an argument from [12], which states that dissimilarities in the input space and
dissimilarities in the feature space behave similarly:

δ1
δ2
≈

exp
(
−γδ21

)
exp (−γδ22)

,

where we denote by δi = ‖ · ‖ (i ∈ {1, 2}) the Euclidean distance between the
truncated Fourier transformations of two arbitrary observations. One solves for
γ and sets

γ =
− ln

(
δmin

δavg

)
δ2avg − δ2min

, (11)

with the quantities δmin :=
∥∥xq − x1−NN(q)

∥∥, δavg := 1
n−1

∑
i6=q ‖xq − xi‖, and

q := arg min1≤i≤n
∥∥xi − x1−NN(i)

∥∥. Here, 1−NN(k) denotes the index of the
nearest neighbor of xk, i.e., the transformation with the smallest distance in the
frequency domain to xk. Hence, xq is the time series with the smallest distance to
its nearest neighbor. δmin is the smallest distance between the Fourier coefficients
of any two time series, and δavg is the average distance of all time series to xq
w.r.t. their Fourier coefficients. (11) allows accounting for the characteristics of
the frequencies observed.

4.2 MK-TSOD Algorithm

Figure 1 provides an intuitive schematic representation of the proposed algo-
rithm, which we elaborate in what follows.

To merge kernel kGAK and the proposed kernel kFFT , we first recall a prop-
erty of kernels [22, Lemma 4.5] that allows their combination. We then detail
how we adapt MKL to SVDD in order to optimize over the free parameter that
results from the kernel combination, and conclude the section with the presen-
tation and runtime analysis of the full algorithm.

Lemma 1 (Additivity). Let X be a set, β ≥ 0, and k, k1, and k2 be kernels
on X . Then βk and k1 + k2 are kernels on X as well.

With Lemma 1, a convex combination with weight w ∈ [0, 1] of GAK kernel
kGAK and the proposed kernel kFFT is a valid kernel that takes the form

k(x, y) = w · kGAK (x, y) + (1− w) · kFFT (x, y),

and incorporates information of both the time and the frequency domain of
x, y ∈ X .

More generally, the MKL problem [18] is to find the Lagrange multipliers αi
of a kernel machine and the weights w = (w1, . . . , wM)T for a convex combination
k of kernels km given by

k(x, y) =

M∑
m=1

wmkm(x, y), s.t. wm ≥ 0 ∧
M∑
m=1

wm = 1. (12)

It follows from Lemma 1 and an induction argument that (12) defines a valid
kernel. To find the solution, we proceed as follows:

The Lagrangian of (2) is

L =
∑
i,j

αiαjk(xi, xj)−
∑
i

αik(xi, xi).

Combining this with k(x, y) from (12), we obtain the MKL problem for SVDD

L =

l∑
i,j=1

αiαj

M∑
m=1

wmkm(xi, xj)−
l∑
i=1

αi

M∑
m=1

wmkm(xi, xj).

To optimize w.r.t. w, [18] propose SimpleMKL, a gradient descent-based ap-
proach. Hence, we compute the partial derivative w.r.t. wm, which for SVDD
takes the form

∂L

∂wm
= αTKmα−αTdiag(Km)

with Gram matrix Km associated with kernel km, and then apply their frame-
work: In the present case, M = 2, k1 = kGAK , and k2 = kFFT . Performing
the gradient descent optimization yields a weight w so that the volume of the
hypersphere is again minimized.

Algorithm 1 presents MK-TSOD in full. The method has a total of five
parameters. We recommend values for T, σ2, and t in Section 5.1. Parameter γ
is set according to (11); C is set by (1).

4.3 Complexity Analysis

The runtime of MK-TSOD depends on that of computing the Gram matrices
for kernels kFFT , kGAK , and on that of solving the MKL problem. For a worst-
case scenario, we assume that the longest time series is of length n, and that

Algorithm 1 MK-TSOD

Require: Time series X = {x1, . . . , xl}, outlier ratio θ
1: C ← 1/(l · θ) . Equation (1)
2: KkFFT = [kFFT (xi, xj)]ij for i, j = 1, . . . , l . Equation (10)
3: KkGAK = [kGAK(xi, xj)]ij for i, j = 1, . . . , l . Equation (8)
4: w,α← MKL(KkFFT ,KkGAK , C) . Equation (12)
5: K← w1 ·KkFFT + (1− w1) ·KkGAK

6: R2 ← (K)kk − 2
∑l

i=1 αi(K)ik + αTKα . Equation (4)
7: outliers ← ∅
8: for xi ∈ X do
9: if (K)ii − 2

∑l
j=1 αj(K)ij + αTKα > R2 then . Equation (3)

10: outliers ← outliers ∪ xi
11: return outliers

one observes l time series. Then the runtime of kGAK per pair of observations
is in O

(
n2
)

[8]. As the Gram matrix computes all pairwise combinations, its

computational cost is O
(
n2l2

)
. Computing the Fourier coefficients of a time se-

ries of length n has a complexity of O (n log(n)), and, by the same reasoning
as before, obtaining the corresponding Gram matrix costs O

(
n log(n)l2

)
. The

worst-case bound for an optimal solution of SVDD is O
(
l3
)

[4]. As the number
of SimpleMKL iterations is bounded and does not depend on l [18], running Sim-
pleMKL does not affect the worst-case estimate. Putting the previous estimates
together, we obtain a total runtime complexity of O

(
n2l2 + n log(n)l2 + l3

)
.

While the worst-case complexity is relatively high, the actual runtime is
reasonable for practical applications and often lower than that of competitors,
as our experiments show. In practice, one typically uses an approximate solver,
such as sequential minimal optimization (SMO; [17]), which yields a solution to
the SVDD problem (2) in O

(
l2
)
; this reduces the runtime cost.

5 Experiments

In our experiments, we compare the proposed technique to the state of the art,
both in terms of outlier detection quality and runtime; we also conduct a pa-
rameter sensitivity and ablation analysis. We start by describing the experiment
setup (Section 5.1), collect the results w.r.t. balanced accuracy, runtime, and
parameter sensitivity in Section 5.2, and compare to ablations in Section 5.3.

5.1 Setup

Metrics & Evaluation. Our experiments evaluate the balanced accuracy
(BA), which is commonly used for outlier detection tasks. We repeat each exper-
iment 10 times, keeping the normal data but sampling a different set of outliers,
and report the mean score and standard deviation. We run all algorithms on a
server running Ubuntu 20.04 with 124 GB RAM, and 32 cores with 2 GHz each.

Table 1: Summary of the 15 data sets. Length is the length of the time series
in the respective data set, #N / #O is the absolute count of normal and out-
lying observations, and #C (N) is the number of classes in the original data set
together with the class set as normal.

Data set Length #N / #O #C (N)

ArrowHead 251 65 / 3 3 (2)
CBF 128 310 / 16 3 (2)
Ch.Concent. 166 1000 / 52 3 (1)
ECG200 96 133 / 7 2 (1)
ECGFiveDays 136 442 / 23 2 (1)
GunPoint 150 100 / 5 2 (1)
Ham 431 103 / 5 2 (1)
Herring 512 77 / 4 2 (1)
Lightning2 637 73 / 3 2 (1)
MoteStrain 84 685 / 36 2 (1)
Strawberry 235 351 / 18 2 (1)
ToeSeg1 277 140 / 7 2 (0)
ToeSeg2 343 124 / 6 2 (0)
Wafer 152 6402 / 336 2 (1)
Wine 234 57 / 3 2 (1)

Data Sets & Data Preparation. We follow the approach by [11,10] and adapt
time series classification data sets from the UCR repository [1,9] to our setting.
To improve comparability, our process mirrors the selection and preprocessing
from [2] but we exclude data sets with fewer than 50 time series [2, Table 1],
due to their small size. Specifically, for binary classification problems, we choose
the majority class as “normal” class, and for multiclass classification problems,
we set the class that is visually the most distinct as “normal”. We then sample
5% of the observations from the respective other class(es), which constitute the
“outliers”. This yields 15 diverse data sets. Training sets include the outliers,
as this is closer to real-world settings, but the outliers are regenerated between
runs. Table 1 summarizes the respective characteristics of the data sets.2

Configurations. In the following, we detail the parameter settings for each
algorithm. We start with a recommendation for the parameters of our algorithm.

MK-TSOD. We set the regularization parameter C as in (1) with an ex-
pected outlier ratio θ = 0.05. For kGAK , we follow the recommendation of
[8] and set σ2 = a2 · median(‖x − y‖) ·

√
median(|x|), with a = 1.5, and

T = b · median(|x|), with b = 0.5. We vary factors a, b in the parameter sen-

2 We abbreviate the data sets “ChlorineConcentration”, “ToeSegmentation1”, and
“ToeSegmentation2” as “Ch.Concent.”, “ToeSeg1”, and “ToeSeg2”, respectively.

sitivity analysis. To solve the optimization problem (2), we use libsvm3, which
we adapt to use precomputed Gram matrices with SVDD. We set the smoothing
parameter γ of the Fourier transform-based kernel using (11), and set t = 20,
based on the parameter analysis we present at the end of the section. The code
for reproducing our experiments is available on GitHub.4

SVDD with DTW. As a baseline, we use kDTW (9) with SVDD; recall
that while the approach is theoretically unsound, it has shown good results
in practice. Because of the absence of a heuristic, we set γ = 1. We set the
regularization parameter C as in MK-TSOD.

HDR and α-hull. We use the reference implementations provided by the
authors together with the recommended parameters.5

DOTS. We set the regularization parameter λ to 0.045, and the number
of medoids k to the number of classes per data set, as recommended by the
authors, and use their reference implementation.6 To compute the BA, we cut
off the ranking based on the expected ratio of outliers, which is 0.05.

ADSL. We set the maximum number of iterations to 1000, k = 0.02, and
l = 0.2, as in [2]. We obtained the code from the authors.

LOF with DTW. As an additional baseline, we combine the well-known
Local Outlier Factor (LOF; [5]) with DTW in place of the Euclidean distance. As
LOF is sensitive to the amount of neighbors n to consider, we set n ∈ {5, 10, 20}
and report the best results.

5.2 Results

Performance. Table 2 shows the average Balanced Accuracy (BA).7 N/A in-
dicates that the respective algorithm did not complete a single run in 24 hours.

One sees that MK-TSOD achieves the best score on 9 out of 15 data sets with
the BA metric, and that LOF-DTW performs second best, that is, it performs
better than the competitors.

Runtime. We measure the absolute runtime of each algorithm w.r.t. the number
and length of times series. We use the data set featuring the longest time series,
Lightning2, and simulate different input configurations. To vary their length, we
sub- or oversample the measured points. To vary the size of the set, we sub-
or oversample the time series themselves. When oversampling, we add Gaussian
noise with a standard deviation of 10−3. This mimics that real-world data does
not consist of duplicates only.

Figure 2 shows our results. MK-TSOD is slower than HDR and α-hull but
faster than ADSL and DOTS w.r.t. the number of time series. However, the
slope of MK-TSOD and DOTS is similar, so differences in runtime might be due

3 https://www.csie.ntu.edu.tw/~cjlin/libsvm/
4 https://github.com/flopska/mk-tsod/
5 https://github.com/robjhyndman/anomalous-acm
6 https://github.com/B-Seif/anomaly-detection-time-series
7 Here, MK denotes MK-TSOD; DTW denotes DTW-SVDD.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/flopska/mk-tsod/
https://github.com/robjhyndman/anomalous-acm
https://github.com/B-Seif/anomaly-detection-time-series

Table 2: Mean BA over 10 runs. Bold print highlights the best results.

Data set MK DTW HDR DOTS α-hull ADSL LOF-DTW

ArrowHead 0.70± 0.2 0.58± 0.2 0.67± 0.1 0.51± 0.1 0.67± 0.2 0.49± 0.0 0.52± 0.1
CBF 0.66± 0.0 0.49± 0.1 0.50± 0.0 0.49± 0.0 0.50± 0.0 0.50± 0.0 0.65± 0.1
Ch.Concent. 0.49± 0.0 0.48± 0.0 0.50± 0.0 0.50± 0.0 0.50± 0.0 0.50± 0.0 0.63± 0.0
ECG200 0.67± 0.1 0.55± 0.1 0.50± 0.0 0.55± 0.1 0.50± 0.1 0.52± 0.0 0.65± 0.1
ECGFiveDays 0.64± 0.0 0.58± 0.0 0.52± 0.0 0.54± 0.0 0.52± 0.0 0.50± 0.0 0.77± 0.0
GunPoint 0.72± 0.1 0.61± 0.1 0.49± 0.0 0.64± 0.1 0.50± 0.0 0.62± 0.1 0.70± 0.1
Ham 0.51± 0.1 0.48± 0.1 0.49± 0.0 0.48± 0.0 0.49± 0.0 0.49± 0.0 0.49± 0.0
Herring 0.52± 0.1 0.51± 0.1 0.50± 0.1 0.50± 0.1 0.47± 0.0 0.50± 0.0 0.50± 0.1
Lightning2 0.57± 0.2 0.49± 0.2 0.48± 0.0 0.50± 0.1 0.51± 0.1 0.64± 0.1 0.72± 0.2
MoteStrain 0.70± 0.0 0.62± 0.1 0.52± 0.0 0.61± 0.0 0.52± 0.0 0.51± 0.0 0.55± 0.0
Strawberry 0.69± 0.1 0.70± 0.0 0.47± 0.0 0.68± 0.0 0.48± 0.0 0.56± 0.0 0.76± 0.0
ToeSeg1 0.65± 0.1 0.50± 0.1 0.49± 0.0 0.47± 0.0 0.48± 0.0 0.61± 0.0 0.73± 0.1
ToeSeg2 0.67± 0.1 0.48± 0.1 0.51± 0.0 0.48± 0.0 0.52± 0.0 0.60± 0.0 0.61± 0.1
Wafer 0.65± 0.0 0.64± 0.0 0.49± 0.0 N/A 0.49± 0.0 0.50± 0.0 0.56± 0.0
Wine 0.48± 0.1 0.50± 0.1 0.60± 0.1 0.56± 0.1 0.65± 0.2 0.54± 0.1 0.58± 0.1

100 200 300 400 500 600 700 800 900
Number of Time Series

101

102

103

104

105

100 200 300 400 500 600
Length of Time Series

100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

R
un

tim
e

in
se

co
nd

s

MK-TSOD DTW-SVDD DOTS HDR α-hull ADSL LOF

Fig. 2: Runtime analysis. We report the median runtime of five independent runs.

to implementation details. The difference to DTW-SVDD and LOF-DTW is
negligible. Regarding the length of time series, the figure shows that MK-TSOD
and DTW-SVDD scale better than ADSL and DOTS, but worse than HDR and
α-hull. Again, LOF-DTW scales similar to MK-TSOD, as expected.

Parameter Sensitivity Analysis. We study the sensitivity of MK-TSOD
w.r.t. parameters σ, T (the smoothness and the width of the window of kGAK),
and t (the number of Fourier coefficients for kFFT). Figure 3 shows the average
results obtained over all data sets from Table 1. When varying one parameter,
we keep the others fixed at their recommended values.

We see that for changes in σ, BA stays nearly constant from x = 1.5. The
figure also shows that the width T of the band considered for alignments does not
influence the result by much. However, we see a slight increase for the BA metric
at T = 0.2. This indicates that focusing on local similarities proves beneficial
for the data sets considered. For the number of Fourier coefficients t, we see
that the best performance is obtained for t = 20, with a slight decline for larger

2.0 4.00.5
σ Factor

0.6

0.8

0.25 0.50 0.75 1.00

T
25 50 75 100

t
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

B
A

Fig. 3: Influence of the factors a, b for the median heuristics for σ, T , and influence
of parameter t. We report the median BA of five independent runs.

values. We hypothesize that using more than 20 coefficients approximates the
time series too closely, and the algorithm cannot generalize, that is, it overfits.
Altogether, we see that MK-TSOD is robust w.r.t. its parameters.

5.3 Ablation Analysis

We consider alternative designs of the proposed method. Instead of combining
multiple kernels, we run SVDD with the individual kernels kFFT (FFT-SVDD)
and kGAK (GAK-SVDD) and compare their results to the ones obtained with
MK-TSOD in terms of the average balanced accuracy over five draws of outliers.
The settings of the individual kernels are the same as in Section 5.1.

Table 3: Ablation analysis. Mean BA over five runs. Bold print highlights the
best results.

Data set MK-TSOD FFT-SVDD GAK-SVDD

ArrowHead 0.70± 0.2 0.65± 0.1 0.61± 0.2
CBF 0.66± 0.0 0.60± 0.1 0.66± 0.0
Ch.Concent. 0.49± 0.0 0.52± 0.0 0.48± 0.0
ECG200 0.67± 0.1 0.63± 0.1 0.62± 0.1
ECGFiveDays 0.64± 0.0 0.65± 0.0 0.62± 0.1
GunPoint 0.72± 0.1 0.65± 0.1 0.64± 0.1
Ham 0.51± 0.1 0.47± 0.1 0.50± 0.1
Herring 0.52± 0.1 0.49± 0.1 0.51± 0.1
Lightning2 0.57± 0.2 0.67± 0.1 0.47± 0.1
MoteStrain 0.70± 0.0 0.62± 0.0 0.67± 0.1
Strawberry 0.69± 0.1 0.71± 0.1 0.73± 0.0
ToeSeg1 0.65± 0.1 0.65± 0.1 0.62± 0.1
ToeSeg2 0.67± 0.1 0.55± 0.1 0.57± 0.1
Wafer 0.65± 0.0 0.62± 0.0 0.65± 0.0
Wine 0.48± 0.1 0.54± 0.1 0.42± 0.0

Table 3 shows the results (with the standard deviation) of our ablation study.
MK-TSOD achieves the largest BA on 10 out of 15 datasets; SVDD with the
kFFT kernel performs best on 5 datasets, and SVDD with the kGAK kernel has
the best score on 3 data sets (including ties). The proposed algorithm can lever-
age the respective strengths of the kernels. Considering the unsupervised setting,
where parameter optimization — including kernel selection — is typically infea-
sible in practice, this result indicates that MK-TSOD provides a good default
choice, often improving performance over employing a single kernel.

6 Conclusions

This paper tackles the long-standing problem of detecting outliers in a set of
time series, for which we propose a new method, MK-TSOD. It builds on SVDD
and combines global alignment and Fourier transform kernels, taking the time
and frequency information of time series into account. The parameters of MK-
TSOD are either intuitive to set or we recommend heuristics. Our evaluation
shows that MK-TSOD achieves state-of-the-art performance, and outperforms
existing approaches w.r.t. the balanced accuracy metric on 9 out of 15 standard
benchmark data sets.

Acknowledgements. This work was supported by the DFG Research Training
Group 2153: “Energy Status Data — Informatics Methods for its Collection,
Analysis and Exploitation”.

References

1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery 31, 606–660 (2017)

2. Beggel, L., Kausler, B.X., Schiegg, M., Pfeiffer, M., Bischl, B.: Time series anomaly
detection based on shapelet learning. Computational Statistics 34, 945–976 (2019)

3. Benkabou, S., Benabdeslem, K., Canitia, B.: Unsupervised outlier detection for
time series by entropy and dynamic time warping. Knowledge and Information
Systems 54(2), 463–486 (2018)

4. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online
and active learning. Journal of Machine Learning Research (JMLR) 6, 1579–1619
(2005)

5. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: SIGMOD Conference. pp. 93–104 (2000)

6. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extrac-
tion on basis of scalable hypothesis tests (tsfresh - A python package). Neurocom-
puting 307, 72–77 (2018)

7. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

8. Cuturi, M.: Fast global alignment kernels. In: International Conference on Machine
Learning (ICML). pp. 929–936 (2011)

9. Dau, H.A., Keogh, E., et al.: The UCR Time Series Classification Archive (2018)
10. Emmott, A., Das, S., Dietterich, T.G., Fern, A., Wong, W.: Systematic con-

struction of anomaly detection benchmarks from real data. Tech. rep. (2015),
(http://arxiv.org/abs/1503.01158)

11. Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic con-
struction of anomaly detection benchmarks from real data. In: ACM SIGKDD
Workshop on Outlier Detection and Description. pp. 16–21 (2013)

12. Ghafoori, Z., Erfani, S.M., Rajasegarar, S., Bezdek, J.C., Karunasekera, S., Leckie,
C.: Efficient unsupervised parameter estimation for one-class support vector ma-
chines. Neural Networks and Learning Systems 29(10), 5057–5070 (2018)

13. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and
dynamic time warping for time series. In: International Joint Conference on Neural
Networks (IJCNN). pp. 2772–2776 (2008)

14. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data:
A survey. Knowledge and Data Engineering 26(9), 2250–2267 (2013)

15. Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection.
In: International Conference on Data Mining Workshop (ICDMW). pp. 1616–1619
(2015)

16. Patel, D., Shah, S.Y., Zhou, N., Shrivastava, S., Iyengar, A., Bhamidipaty, A.,
Kalagnanam, J.: Flops: On learning important time series features for real-valued
prediction. In: IEEE BigData 2020. pp. 1624–1633 (2020)

17. Platt, J.: Sequential minimal optimization: A fast algorithm for train-
ing support vector machines (1998), https://www.microsoft.com/en-

us/research/publication/sequential-minimal-optimization-a-fast-

algorithm-for-training-support-vector-machines/

18. Rakotomamonjy, A., Bach, F., et al.: SimpleMKL. Journal of Machine Learning
Research (JMLR) 9, 2491–2521 (2008)

19. Ruff, L., Görnitz, N., Deecke, L., Siddiqui, S.A., Vandermeulen, R.A., Binder, A.,
Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on
Machine Learning (ICML). vol. 80, pp. 4390–4399 (2018)

20. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. Acoustics, Speech, and Signal Processing 26(1), 43–49 (1978)

21. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press (2002)

22. Steinwart, I., Christmann, A.: Support Vector Machines. Springer (2008)
23. Tax, D.M.J., Duin, R.P.W.: Support Vector Data Description. Machine Learning

54(1), 45–66 (2004)
24. Vercruyssen, V., Meert, W., Davis, J.: “now you see it, now you don’t!” detect-

ing suspicious pattern absences in continuous time series. In: SIAM International
Conference on Data Mining (SDM). pp. 127–135 (2020)

http://arxiv.org/abs/1503.01158
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/

	Multi-Kernel Times Series Outlier Detection

