

Multi-kernel Time Series Outlier Detection

Discovery Science 2023

Florian Kalinke, Edouard Fouché, Haiko Thiessen and Klemens Böhm | Oct. 11th, 2023

www.kit.edu

Motivation

- Time-series data is ubiquitous across various domains.
- Goal: Detect outlying time series in a pool of time series.
- Outlier detection is best formulated as an unsupervised task.
 - No hyperparameter tuning.
 - Feature selection problem.
- Feature selection problem especially prevalent in Active Learning, they often use support vector data description (SVDD; Tax and Duin [5]).

Figure: Anomalous heartbeat identified as outlying time-series [2].

IPD Böhm

Proposed Approach

Figure: Schematic representation of the proposed outlier detection method.

$\underset{\circ}{\text{Motivation}}$	Proposed Approach	SVDD 000	GAK oo	Fourier Transform o	MKL o	Results	Summary o	References

Definition (Kernel, feature map, feature space)

Definition: Let \mathcal{X} be a non-empty set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a map $\phi : \mathcal{X} \to \mathcal{H}$ such that for all $x_1, x_2 \in \mathcal{X}$ it holds that

 $k(x_1, x_2) = \langle \phi(x_2), \phi(x_1) \rangle.$

The function ϕ is called **feature map** and \mathcal{H} is the associated **feature space**.

Lemma (Additivity; Steinwart and Christmann [4])

Let \mathcal{X} be a set, $\alpha \geq 0$, and k, k_1 , and k_2 be kernels on \mathcal{X} . Then αk and $k_1 + k_2$ are also kernels on \mathcal{X} .

```
\bullet \rightarrow \textit{wk}_1 + (1 - \textit{w})\textit{k}_2 \text{ is also a kernel on } \mathcal{X} \text{ for } \textit{w} \in [0, 1].
```

Motivation o	Proposed Approach	SVDD ●oo	GAK oo	Fourier Transform o	MKL o	Results	Summary o	References

Support Vector Data Description (SVDD)

- One-class classifier basing on SVM.
- Enclose the data with a (hyper)sphere; points inside are inliers, points outside outliers.
- Optimization problem:

• min
$$R^2 + C \sum_i \xi$$

with constraints

$$\left|\phi\left(x_{i}
ight)-a
ight\|^{2}\leq R^{2}+\xi_{i}, \quad \xi_{i}\geq0 \quad \forall i$$

Parameter *C* controls the amount of allowed outliers. Recommendation:
 C = 1/(1-x)^2

$$r = \frac{1}{\# \text{outliers}}$$

Figure: Example of a linear decision boundary (n = 100, $k(\mathbf{x}_1, \mathbf{x}_2) = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle$).

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	00	0	0	000	0	

Effects of a Gaussian / RBF Kernel

• For illustrative purposes: $k(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\gamma \|\mathbf{x}_1 - \mathbf{x}_2\|^2\right)$.

Figure: Effects of parameter γ on the decision boundary, with C fixed.

Motivation o Proposed Approach o SVDD GAK o Pourier Transform o MKL o Results o o o	Summary References
---	--------------------

Kernels for Time Series

- Time series x = (x_i)ⁿ_{i=1}, y = (y_i)^{n'}_{i=1} (x_i, y_i ∈ ℝ) are special because the may have different lengths, thus rendering Euclidean distance (||x − y||?) useless.
- Even with the same lengths: Small shifts in data may have a huge impact.
- People use feature extraction to transform their time series to vectors of fixed size.
 - $\blacksquare \rightarrow \mathsf{RBF}$ kernel with the extracted features.
 - Works okay in general. However, as too many features usually reduce the effectiveness of machine learning algorithms which features to select?
- Feature extraction:
 - needs domain-knowledge
 - $\hfill automated methods need class labels <math display="inline">\rightarrow$ not applicable to outlier detection (unsupervised).
 - induces information loss (by data-processing inequality).
- Examples: mean, variance, trend,
- Typically, people use dynamic time warping (DTW) but DTW is not a distance and does not yield a valid kernel.
 - \blacksquare \rightarrow The theory underlying kernel functions (existence of feature space, optimality of result) does not hold.

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	•0	0	0	000	0	

Global Alignment Kernels (GAK)

- Similar idea to DTW.
- However, instead of considering the minimum over all alignments, Cuturi et al. [1] consider the "Soft-Minimum" instead → the sum over all valid alignments.
- The idea is that if many alignments provide a good fit, then time series can not be too different.
- Why has this not been applied to outlier detection before?
 - We do not know → but maybe because there was a bug in libsvm which does not allow the use of precomputed Gram matrices with SVDD.

Figure: Alignment Grid

Motivation o	Proposed Approach	SVDD 000	GAK o●	Fourier Transform	MKL o	Results	Summary o	References
-----------------	-------------------	-------------	-----------	-------------------	----------	---------	--------------	------------

Fourier Transformation

- GAKs allow incorporating time information.
 - We propose to also integrate frequency information of time series.
- In particular, we consider the "Fourier transform kernel", which truncates the vectors obtained by the Fourier transformation of the time series as follows:
 - The Fourier transformation of a time series $x = (x_m)_{m=1}^n$ is the sequence $X = (X_k)_{k=1}^n$ of the Fourier coefficients

$$X_{k} = \sum_{m=1}^{n} x_{m} \exp \left\{ -2\pi i \frac{(k-1)(m-1)}{n} \right\}, \quad k = 1, \dots, n$$

with $i^2 = -1$ the imaginary number.

• We truncate the Gaussian kernel taken over the Fourier transformations of x and y, that is,

$$k_{FFT}(x, y) := \exp\left\{-\gamma \sum_{j=1}^{t} \left(X_j - Y_j\right)^2\right\},\tag{1}$$

with smoothing parameter γ , and $1 \le t \le \min(n, n')$. Hence, parameter *t* controls the quality of the approximation by restricting the number of coefficients.

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	00	•	0	000	0	

Multiple Kernel Learning (MKL)

Consider a convex combination k of kernels km

$$k(x, x') = \sum_{m=1}^{M} d_m k_m(x, x')$$
, with $d_m \ge 0$, $\sum_{m=1}^{M} d_m = 1$,

then finding the Lagrange multipliers α_i and weights d_m is known as multiple kernel learning problem.

- Rakotomamonjy et al. [3] propose the SimpleMKL algorithm, combining gradient descent to find the weights *d_m* with the standard SVM optimization to find the multipliers *α_i*.
- To run the gradient descent algorithm, we need the gradient w.r.t. d_m of the problem we wish to optimize (see our article).

Motivation o	Proposed Approach	SVDD 000	GAK oo	Fourier Transform	MKL ●	Results	Summary o	References
-----------------	-------------------	-------------	-----------	-------------------	----------	---------	--------------	------------

Performance

Table: Mean balanced accuracy over 10 runs. Bold print highlights the best results. N/A did not complete in 24 hours.

Data set	MK	DTW	HDR	DOTS	lpha-hull	ADSL	LOF-DTW
ArrowHead	0.70 ± 0.2	0.58 ± 0.2	0.67 ± 0.1	0.51 ± 0.1	0.67 ± 0.2	0.49 ± 0.0	0.52 ± 0.1
CBF	0.66 ± 0.0	0.49 ± 0.1	0.50 ± 0.0	0.49 ± 0.0	0.50 ± 0.0	0.50 ± 0.0	0.65 ± 0.1
Ch.Concent.	0.49 ± 0.0	0.48 ± 0.0	0.50 ± 0.0	0.50 ± 0.0	0.50 ± 0.0	0.50 ± 0.0	$\textbf{0.63} \pm \textbf{0.0}$
ECG200	0.67 ± 0.1	0.55 ± 0.1	0.50 ± 0.0	0.55 ± 0.1	0.50 ± 0.1	0.52 ± 0.0	0.65 ± 0.1
ECGFiveDays	0.64 ± 0.0	0.58 ± 0.0	0.52 ± 0.0	0.54 ± 0.0	0.52 ± 0.0	0.50 ± 0.0	$\textbf{0.77} \pm \textbf{0.0}$
GunPoint	0.72 ± 0.1	0.61 ± 0.1	0.49 ± 0.0	0.64 ± 0.1	0.50 ± 0.0	0.62 ± 0.1	0.70 ± 0.1
Ham	0.51 ± 0.1	0.48 ± 0.1	0.49 ± 0.0	0.48 ± 0.0	0.49 ± 0.0	0.49 ± 0.0	0.49 ± 0.0
Herring	0.52 ± 0.1	0.51 ± 0.1	0.50 ± 0.1	0.50 ± 0.1	0.47 ± 0.0	0.50 ± 0.0	0.50 ± 0.1
Lightning2	0.57 ± 0.2	0.49 ± 0.2	0.48 ± 0.0	0.50 ± 0.1	0.51 ± 0.1	0.64 ± 0.1	$\textbf{0.72} \pm \textbf{0.2}$
MoteStrain	$\textbf{0.70} \pm \textbf{0.0}$	0.62 ± 0.1	0.52 ± 0.0	0.61 ± 0.0	0.52 ± 0.0	0.51 ± 0.0	0.55 ± 0.0
Strawberry	0.69 ± 0.1	0.70 ± 0.0	0.47 ± 0.0	0.68 ± 0.0	0.48 ± 0.0	0.56 ± 0.0	$\textbf{0.76} \pm \textbf{0.0}$
ToeSeg1	0.65 ± 0.1	0.50 ± 0.1	0.49 ± 0.0	0.47 ± 0.0	0.48 ± 0.0	0.61 ± 0.0	0.73 ± 0.1
ToeSeg2	0.67 ± 0.1	0.48 ± 0.1	0.51 ± 0.0	0.48 ± 0.0	0.52 ± 0.0	0.60 ± 0.0	0.61 ± 0.1
Wafer	0.65 ± 0.0	0.64 ± 0.0	0.49 ± 0.0	N/A	0.49 ± 0.0	0.50 ± 0.0	0.56 ± 0.0
Wine	0.48 ± 0.1	0.50 ± 0.1	0.60 ± 0.1	0.56 ± 0.1	0.65 ± 0.2	0.54 ± 0.1	0.58 ± 0.1

• \rightarrow competitive results on standard benchmark data (best on 9/15).

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	00	0	0	●00	0	

11/15 Oct. 2023 F. Kalinke et al.: Multi-kernel Time Series Outlier Detection

Karlsruhe Institute of Technology

Runtime

Figure: Runtime analysis. We report the median runtime of five independent runs.

Motivation o	Proposed Approach	SVDD 000	GAK oo	Fourier Transform o	MKL o	Results o●o	Summary o	References

Ablation Study

Data set	MK-TSOD	FFT-SVDD	GAK-SVDD
ArrowHead	$\textbf{0.70} \pm \textbf{0.2}$	0.65 ± 0.1	0.61 ± 0.2
CBF	0.66 ± 0.0	0.60 ± 0.1	0.66 ± 0.0
Ch.Concent.	0.49 ± 0.0	0.52 ± 0.0	0.48 ± 0.0
ECG200	0.67 ± 0.1	0.63 ± 0.1	0.62 ± 0.1
ECGFiveDays	0.64 ± 0.0	0.65 ± 0.0	0.62 ± 0.1
GunPoint	0.72 ± 0.1	0.65 ± 0.1	0.64 ± 0.1
Ham	0.51 ± 0.1	0.47 ± 0.1	0.50 ± 0.1
Herring	0.52 ± 0.1	0.49 ± 0.1	0.51 ± 0.1
Lightning2	0.57 ± 0.2	0.67 ± 0.1	0.47 ± 0.1
MoteStrain	$\textbf{0.70} \pm \textbf{0.0}$	0.62 ± 0.0	0.67 ± 0.1
Strawberry	0.69 ± 0.1	0.71 ± 0.1	$\textbf{0.73} \pm \textbf{0.0}$
ToeSeg1	0.65 ± 0.1	0.65 ± 0.1	0.62 ± 0.1
ToeSeg2	0.67 ± 0.1	0.55 ± 0.1	0.57 ± 0.1
Wafer	0.65 ± 0.0	0.62 ± 0.0	0.65 ± 0.0
Wine	0.48 ± 0.1	0.54 ± 0.1	0.42 ± 0.0

Table: Ablation analysis. Mean BA over five runs. Bold print highlights the best results.

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	00	0	0	00●	0	

13/15 Oct. 2023 F. Kalinke et al.: Multi-kernel Time Series Outlier Detection

Summary

• We combine global alignment kernels, Fourier transform kernels, and multiple kernel learning with support vector data description for time series outlier detection.

Contributions:

- SVDD-based outlier detection algorithm.
- GAK+FFT only, no feature engineering.
- One hyperparameter, C, the expected outlier ratio.

Possibilities for future work:

- Domain-dependent kernels, for example, for energy data.
- Other heuristics for γ .
- Apply within active learning.

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	00	0	0	000	•	

References I

- [1] Marco Cuturi et al. "A Kernel for Time Series Based on Global Alignments". In: *ICASSP (2)*. 2007.
- [2] Robert T Olszewski. "Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data". PhD thesis. School of Computer Science Carnegie Mellon University, 2001.
- [3] Alain Rakotomamonjy et al. "SimpleMKL". In: Journal of Machine Learning Research 9 (2008).
- [4] Ingo Steinwart and Andreas Christmann. Support Vector Machines. 2008.
- [5] David M. J. Tax and Robert P. W. Duin. "Support Vector Data Description". In: *Machine Learning* 54.1 (2004).

Motivation	Proposed Approach	SVDD	GAK	Fourier Transform	MKL	Results	Summary	References
0	0	000	00	0	0	000	0	