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Quick Summary

e Hilbert-Schmidt independence criterion (HSIC [1, 2, 3, 4]; aka.
distance covariance): popular dependency measure.

e Applications: feature selection, causal discovery, independence
testing, clustering, sensitivity analysis, uncertainty quantification.

e Many known estimators converge at a rate of Op (n_l/ 2).

e Contribution: For a large class of distributions and kernels on R?
Op (n_l/ 2) is the optimal rate.

HSIC

o Given X = (Xm>%:1 ~Pon X = x%lem, X, 18 equipped with

kernel Ky, and teature map ¢y, Xy — Hy, , HSIC takes the form
HSICH() = [14(B) — s (@11 ) ||, -

with ®%:1Pm the product of the marginal distributions P, m € [M] :=
{1,..., M}, and pp(P) = Exp [¢(X)].
o We focus on X = RY, Xy, = RIn g = S M g, RT = M Rdm.
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e Translation-invariant kernels: There exists ¥, : R%m —s R such that
km(x,y) = ¥m(x —y). Example: Gaussian kernel.

e Gaussian kernels: k;,(x,y) = e

Our Goal: Lower Bound

e [}, := any estimator of HSIC(PP) based on n i.i.d. samples from P.

o A positive sequence (£,)0°

there exists ¢ > 0 such that

worst distribution R
inf  sp D" {‘HSICk(IP) o
., PeP

~
best estimator

is a lower bound of HSIC estimation if

> cfn} >0 Vn.

e An estimator with a matching upper bound is called minimax-optimal.
e Wanted: &, < n=1/2.
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Tool: Le Cam’s Method

o Key [5]: There exist o > 0 and a positive sequence (s,,)>° | such that

for any fixed n, there exists an adversarial pair (P@O, Pgl) e P xPst.
(i) KL (IP’le\IP’Z’O) < o, and (ii) [HSIC;,(Py,) — HSIC, (P, )| > 25, > 0.

e Then, for all n,
1=/ /2
>Sn}>max<6 &/>.

inf sup P" {‘HSICk(P) — [,
F, PeP
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Our Adversarial Pair

o Let G be NV (,u, E) Gaussians on R? = xM  RIm with covariance

m=1
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o 0O---1p---0
X=3050=, ... p?--- 0 c R4
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where i =dy, j=di+1, pe (—1,1).
e We choose Py, = N (g, Xo) and Py, = N (p1, X1) with

po =0, € Rd, 3o =2(dy,d; +1,0) =1, € RdXd,
1 d dxd
= —1,¢ R", Y1 =X(dy,dy + 1, c R“"%,
p == 1= 3(dy,dy + 1, pp)
with pn:\%.

Proof Sketch

e We use the reduction

sup P" {)HSICk (P) — F| > sn} > sup P {‘HSICk P) — £,
PeP Peg

e For our adversarial pair (]P)QO, P@l), one can show that

(i) KL (P&HP%) < o= % for n > 2 (Gaussians = closed-form), and

(ii) |HSICk(P91) — HSICk(PQO)‘ > 28y, = 2% > (.

e
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Main Result

e Let P be any class of Borel probability measures containing the d-
dimensional Gaussians, k = ®%:1km with &y, : R9m x RIm — R
continuous bounded shift-invariant characteristic kernels. Then, there
exists a constant ¢ > 0, such that for any n > 2
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inf sup P" {‘HSICk (P) — F),
F, PePpP

L —— > 0.
2(2y+1)4™!

e General case by Bochner’s theorem (¢ > 0).

o Gaussian ky,-s: ¢ =

Discussion

e Many of the existing HSIC estimators on R? are minimax-optimal.

e Existing lower bounds (MMD [6], mean embedding [7], covariance op-
erator [8]) rely on adversarial pairs that do not work for HSIC.

e Corollary: Lower bound of O (\/Lﬁ) on covariance operator estimation,

recovering [8].
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