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Quick Summary

• Kernel Stein discrepancy (KSD; [1, 2]): powerful goodness-of-fit measure
and test.
• Applications: Assessing and improving sample quality, validating MCMC
methods, comparing deep generative models, . . . .
• Limitations: Quadratic runtime complexity.
• Main contribution: Accelerated estimator with the same convergence
rate as the quadratic-time estimator.

Kernel Stein Discrepancy

• Goal: Test H0 : P = Q vs. H1 : P ̸= Q for fixed known target P and
unknown sampling distribution Q, given samples Q̂n := {xi}ni=1 ⊂ Rd of Q.
• We illustrate the method with the Langevin-Stein operator-based [3] KSD on
Rd, which is

Sp(Q) =
∥∥EX∼Qhp(·, X)

∥∥
Hhp

,

with kernel (x,y ∈ Rd)
hp(x,y) :=

〈
∇x log p(x),∇y log p(y)

〉
Rd k(x,y)

+
〈
∇y log p(y),∇xk(x,y)

〉
Rd

+
〈
∇x log p(x),∇yk(x,y)

〉
Rd +

d∑
i=1

∂2k(x,y)
∂xi∂yi

,

p the (Lebesgue) density of P, and kernel k : Rd × Rd → R.
• Note that knowledge of the derivative of the score function ∇x log p(x) is
enough, i.e., knowledge of p up to normalization suffices.
• Existing KSD estimators take (roughly) the form

S2
p

(
Q̂n

)
= 1
n2

n∑
i,j=1

hp
(
xi,xj

)
,

and have a runtime requirement of O
(
n2).

Nyström-based Estimator (N-KSD)

• Denote by Q̃m := {{x̃i}}mi=1 a subsample of Q̂n. The Nyström estimator is

S̃2
p

(
Q̂n

)
= βT

pK−
hp,m,m

βp,

with βp = 1
nKhp,m,n1n ∈ Rm, matrices

Khp,m,m =
[
hp(x̃i, x̃j)

]m
i,j=1 ∈ Rm×m, and

Khp,m,n =
[
hp(x̃i,xj)

]m,n
i,j=1 ∈ Rm×n,

and A− denoting the (Moore-Penrose) pseudo-inverse of a matrix A.
• Runtime: O

(
mn +m3), saving if m = o

(
n2/3

)
.

Sub-Gaussian Assumption

• Existing Nyström analysis considers bounded kernels only. In practice, hp is
usually unbounded and existing results do not apply.
• Example: Consider d = 1, standard normal p(x) ∝ exp

(
−x2/2

)
, and the

RBF kernel k(x, y) = exp
(
−γ(x− y)2

)
(γ > 0). Then

hp(x, x) = x2 + 2γ x→∞→ ∞.

Similarly, for the IMQ kernel k(x, y) =
(
c2 + (x− y)2

)−β (β, c > 0).
• For the Nyström analysis, assume that h̄p (·, X) := hp (·, X) −
EX∼Qhp (·, X) with the sampling distribution Q is sub-Gaussian, that is,∥∥∥∥〈h̄p (·, X) , u

〉
Hhp

∥∥∥∥
ψ2
≲

∥∥∥∥〈h̄p (·, X) , u
〉

Hhp

∥∥∥∥
L2(Q)

< ∞ (1)

holds for all u ∈ Hhp, with a u-independent absolute constant in ≲, and ∥·∥ψ2
denoting the sub-Gaussian norm.

Main Results

•
√
n-consistency of KSD estimator: If∥∥∥∥∥∥hp (·, X)

∥∥
Hhp

∥∥∥∥
ψ2
< ∞

holds (implied by (1)), then∣∣∣Sp(Q) − Sp

(
Q̂n

)∣∣∣ = OP

(
n−1/2

)
.

•
√
n-consistency of N-KSD: If the sub-Gaussian property (1) holds, then∣∣∣Sp(Q) − S̃p

(
Q̂n

)∣∣∣ = OP

(
n−1/2

)
,

given that the effective dimension NQ,h̄p(λ) := tr
(
C−1
Q,h̄p,λ

CQ,h̄p

)
(CQ,h̄p :=

EX∼Q
[
hp (·, X) ⊗ hp (·, X)

]
; CQ,h̄p,λ := CQ,h̄p + λI , λ > 0) either

• decays polynomially:

NQ,h̄p(λ) ≲ λ−γ, m = Ω̃
(
n1/(2−γ)

)
,

for γ ∈ (0, 1] (computational savings if γ < 1/2), or
• decays exponentially:

NQ,h̄p(λ) ≲ log(1 + c1/λ) , m = Ω̃
(
n1/2

)
,

for some c1 > 0 (computational savings if n is large enough).
• The decay of the effective dimension can be linked to the decay of the eigen-
values of the covariance operator CQ,h̄p [4, Proposition 4, 5].

Discussion

• Unboundedness of the feature map handled by sub-Gaussian assumption.
• The quadratic-time and the N-KSD estimator both have

√
n-consistency, i.e.,

computational gain with no loss in statistical accuracy.
• Our results apply in the general KSD framework [5].
• Open: Weaker assumption for the Nyström case.

Goodness-of-fit Benchmark

• Runtime and power of Nyström KSD (N-KSD) and competitors
on the restricted Boltzmann machine (RBM) goodness-of-fit benchmark.

0 2000 4000
Samples n

10 1

101

Ru
nt

im
e 

in
 s

0.00 0.02 0.04 0.06
Perturbation  (RBM)

0.0

0.5

1.0

Po
we

r

N-KSD  IMQ
N-KSD  Gauss
KSD IMQ
KSD Gauss

L1 IMQ
L2 SechExp
FSSD-opt Gauss

FSSD-rand Gauss
Cauchy RFF
Gauss RFF

• Code: https://github.com/flopska/nystroem-ksd
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