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Quick Summary

e Kernel Stein discrepancy (KSD; [1, 2]): powerful goodness-of-fit measure
and test.

e Applications: Assessing and improving sample quality, validating MCMC
methods, comparing deep generative models, .. ..

e Limitations: Quadratic runtime complexity:.

e Main contribution: Accelerated estimator with the same convergence
rate as the quadratic-time estimator.

Kernel Stein Discrepancy

o Goal: Test Hy : P = Q vs. H : P # Q forAﬁxed known target IP and
unknown sampling distribution Q, given samples Qy, := {x;}' ; C R? of Q.
e We illustrate the method with the Langevin-Stein operator-based [3] KSD on
]Rd, which is
$p(Q) = [Ex~ghp( Xy, -
p
with kernel (x,y € R%)

hp(x,y) = (Vxlog p(x), Vy log p(y) ) ga k(x, ¥)

+ <vy 1Og p(y)7 vxk(xa y)>Rd
d

+ (Vxlog p(x), Vyk(x,y))pa + Y
1=1

p the (Lebesgue) density of P, and kernel k : R? x R? — R.

e Note that knowledge of the derivative of the score function Vxlog p(x) is
enough, i.e., knowledge of p up to normalization suffices.

Ok(x,y)
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e Existing KSD estimators take (roughly) the form

. 1
Sp(Qn) == D= hplxixy).
ij—=1

and have a runtime requirement of O(n2).

Nystrom-based Estimator (N-KSD)

e Denote by Qi = {1x;}}i" a subsample of Q. The Nystrom estimator is
2(A \ _ aTpe—
Sp (Qn) _ pth,m,m’Bp’
with B = %th,m,nln € R matrices
~ ~ m
K, mm = [hp(x%xj)}z’,j:l e R™*"™ and
~ m,n
th,m,n - [hp(xivxj)}z',jﬂ < R™*,
and A~ denoting the (Moore-Penrose) pseudo-inverse of a matrix A.

e Runtime: (’)(mn + mg), saving if m = 0(n2/3).

Sub-(Gaussian Assumption

e bixisting Nystrom analysis considers bounded kernels only. In practice, Ay is
usually unbounded and existing results do not apply.

e Example: Consider d = 1, standard normal p(x) e:x:p(—x2 /2), and the
RBF kernel k(z,y) = exp(—v(z — y)?) (v > 0). Then

hp(z,z) = 22+ 29 "5 .

Similarly, for the IMQ kernel k(x,y) = (02 + (x — y)2) =5 (B,c>0).
e For the Nystrom analysis, assume that hy(-, X) = hy(-,X) —
Ex~~qhp (-, X) with the sampling distribution Q is sub-Gaussian, that is,

< 00 (1)

H<hp (+, X) >U>th| (hp (-, X) >U>"th 50

holds for all u € Hy, , with a u-independent absolute constant in 5, and |-[| 5,
denoting the sub-Gaussian norm.
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Main Results

e \/n-consistency of KSD estimator: If

||hp<'vX)Hth <00

(05)

holds (implied by (1)), then
(@) = 5p(Qu)| = 0p(n11?).
e \/n-consistency of N-KSD: If the sub-Gaussian property (1) holds, then

|Sp((@) — gp (@n) =0Op (n_l/Q) ;
given that the effective dimension N@,ﬁpo‘) = tr( @,1}@, )\CQ,hp> (OQ,l_zp =
Ex~qlhp (-, X)® hy (-, X)]; Co hph = Co By T M, A > 0) either
e decays polynomially:
_ ~( 1/(9—
NQ,BpO‘) <A, m = Q(n /( 7)) ,

for v € (0, 1] (computational savings if v < 1/2), or
e decays exponentially:

N@,ﬁp()‘) <log(l+c1/A), m = Q(nl/z) ,

for some ¢; > 0 (computational savings if n is large enough).

e The decay of the effective dimension can be linked to the decay of the eigen-
values of the covariance operator CQ 7|4, Proposition 4, 5].
p

Discussion

e Unboundedness of the feature map handled by sub-Gaussian assumption.

e The quadratic-time and the N-KSD estimator both have /n-consistency, i.e.,
computational gain with no loss in statistical accuracy:.

e Our results apply in the general KSD framework [5].
e Open: Weaker assumption for the Nystrom case.

Goodness-of-fit Benchmark

e Runtime and power of Nystrom KSD (N-KSD) and competitors
on the restricted Boltzmann machine (RBM) goodness-of-fit benchmark.

== N-KSD IMQ ——e-= L1 IMQ FSSD-rand Gauss
--+-= N-KSD Gauss L2 SechExp —— Cauchy RFF
-x-- KSD IMQ ---- FS5SD-opt Gauss  —+- Gauss RFF

---+-- KSD Gauss
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e Code: https://github.com/flopska/nystroem-ksd
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