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Quick Summary

New non-parametric online change detection algorithm for Rd-valued data

with runtime complexity of O(log n) per observation.
Guarantees on average run length, uniform false alarm probability, and

expected detection delay.

Minimax optimality of expected detection delay.

Experimental validation on synthetic, MNIST, HASC, and audio data.

Key idea: Online approximation of the maximum mean discrepancy on a

dyadic grid using random Fourier features.

Problem Statement

Setup: X1, X2, . . . ; Xt ∈ Rd; P,Q probability measures on Rd; P 6= Q. ∃η ∈ N ∪ {∞} such that

Xt ∼

{
P for t = 1, . . . , η

Q for t = η + 1, η + 2, . . .
.

Goal: Stop with minimal delay as soon as η is reached, but not before; never stop in case η = ∞.

MaximumMean Discrepancy (MMD)

Let K : Rd × Rd → R be a bounded kernel with

associated reproducing kernel Hilbert space

(RKHS) HK and (canonical) feature map K(·, x)
for x ∈ Rd. Then

MMDK(P,Q) = ‖µK(P) − µK(Q)‖Hk
,

where µK : P 7→
∫

K(·, x)dP(x) is the kernel

mean embedding [1].

Kernel-based metric on probability measures

under mild conditions.

Classic estimators are O(n2).

Random Fourier Feature (RFF) Approximation

If K is bounded continuous translation-invariant, by Bochner’s theorem

K(x, y) =
∫
Rd

e−iω>(x−y)dΛ(ω) .

Approximate K by [3; 4]

K̂(x, y) := 〈ẑK(x), ẑK(y)〉, where ẑK(x) = 1√
r

(
(sin(ω>

j x), cos(ω>
j x))

)r

j=1 ∈ R2r,

leading to

MMDK̂ [X1:n, Y1:m] =
∥∥∥µK̂

(
P̂n

)
− µK̂

(
Q̂n

)∥∥∥
HK̂

=

∥∥∥∥∥1
n

n∑
i=1

ẑK(Xi) − 1
m

m∑
i=1

ẑK(Yi)

∥∥∥∥∥
2

.

Observation: Both sums can be stored explicitly and MMD can be efficiently computed.

Proposed Change Detection Algorithm: Online RFF-MMD

At the n-th iteration, the algorithm considers log2(n) splits of the data stream {X1, . . . , Xn}. For
every such split the RFF-MMD between empirical measures of the two samples is computed. The

process is stopped at the first n for which at least one statistic is larger than a given threshold.

Formally, the Online RFF-MMD stopping time is defined as

N = inf

n ≥ 2 |
blog2(n)c−1⋃

j=0

√
2j(n − 2j)

n
MMDK̂

[
X1:(n−2j), X(n−2j+1):n

]
> λn

 .

The algorithm has logarithmic time complexity per observation and overall logarithmic space

complexity, as illustrated by the following example: upon observing the first n = 6 elements

X1, . . . , X6, the algorithm operates as follows

Theoretical Guarantees

With an appropriately chosen sequence of thresholds, RFF-MMD can be made to attain, respectively,

a desired average run length or a desired uniform false alarm probability.

Average Run Length

For any γ > 1, if the sequence of thresholds sat-
isfies

λn ≥
√

2 +
√

2 log (4γ log2 (2γ))

for all n ∈ N, it holds that E∞[N ] ≥ γ.

False Alarm Probability

For any α ∈ (0, 1), if the sequence of thresholds

satisfies

λn ≥
√

2 +
√

2 (log(n/α) + 2 log log2(n) + log log2(2n))

for each n ∈ N, it holds that P∞(N < ∞) ≤ α.

With high probability, provided the number of RFFs is chosen sufficiently large, the detection delay

is bounded from above by a quantity depending only on the chosen α, the number of pre-change

observations, and the squared MMD between the pre- and post-change distributions.

Detection Delay

If λn is chosen to control the false alarm probability at some level α ∈ (0, 1), supp (P) ∪ supp (Q) ⊆ X
for some compact set X ⊂ Rd, the quantities η, α, and MMDK [P,Q] jointly satisfy

η ≥ C1
log (2η/α)

(MMDK [P,Q])2 ,

and the number of random features is chosen so that

√
r ≥ C2

C3 +
√

2 log (2/α)
(MMDK [P,Q])2 ,

then with probability at least 1 − α, it holds that

(N − η)+ ≤ 1 ∨ C4
log (2η/α)

(MMDK [P,Q])2 ,

where C1, C2, C3, and C4 are absolute constants independent of η, α, and MMDK [P,Q].

The detection delay of RFF-MMD is optimal from a minimax perspective, up to logarithmic terms.

Information Theoretic Bounds

For every bounded, continuous, and translation invariant kernel K : Rd × Rd → R there is a constant

CK depending only on K and absolute constants α0, β0 ∈ (0, 1) independent of K , such that for any

α ≤ α0 it holds that

inf
N :P∞(N<∞)≤α

sup
η>1

P,Q∈M+
1

Pη

(
N ≥ η + CK

log (1/α)
(MMDK [P,Q])2

)
≥ β0

with the infimum being over all extended stopping times.

Numerical Experiments

MNIST (d = 768). Pre-change: 64 samples of digit 0; post-change: samples of indicated digit.
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HASC (Human Activity Sensing Consortium; d = 3). Pre-change: 100 samples of “Walking”;

post-change: 100 samples of “Staying”.

Algorithm Average delay Too early Miss

Online RFF MMD 21.86 2 1

NewMA 34.25 1 5

ScanB 31.20 0 0

OKCUSUM 17.44 1 0

RuLSIF 20.38 2 0

Loudness of Chopin’s Mazurka Op. 17 No. 4 (d = 1). Change points in loudness information of

Chopin’s Mazurkas correspond to score positions having dynamic markings, tempo, or expression

markings, among others [2]. Our proposed method flags 10 change points too early, and, on the

remaining 15 has an average detection delay of 73.67, with a median detection delay of 64.0.
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