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Quick Summary Theoretical Guarantees
= New non-parametric online change detection algorithm for R%-valued data With an appropriately chosen sequence of thresholds, RFF-MMD can be made to attain, respectively,

with runtime complexity of O(logn) per observation. a desired average run length or a desired uniform false alarm probability.

Guarantees on average run length, uniform false alarm probability, and

expected detection delay. Average Run Length False Alarm Probability
= Minimax optimality of expected detection delay. . L it  thresholds sat . i th £ threshold
= Experimental validation on synthetic, MNIST, HASC, and audio data. iS%reiﬂ\W = & RS SEGUENCE OT TIESAVICS 54 S;gsaﬁnela € (0, 1), if the sequence of thresholds
= Key idea: Online approximation of the maximum mean discrepancy on a
dyadic grid using random Fourier features. An = V2 + /2log (471og, (2)) An =
for all n € N, it holds that Eo[N] > . V2 + /2 (log(n /) + 2log logy(n) + log log,(2n))

for each n € N, it holds that P (N < o0) < a.
Problem Statement

- Setup: X1, Xs,...: X; € R%: P, Q probability measures on R%: P £ Q. 3 € N U {oo} such that W|th high probability, provided the.number of RFFs is chosen sufficiently large, the detection delay
Is bounded from above by a quantity depending only on the chosen «, the number of pre-change
X P fort=1,...,n observations, and the squared MMD between the pre- and post-change distributions.
t Q fort=n+1,n+2,...

= Goal: Stop with minimal delay as soon as n is reached, but not before; never stop in case n = oc. Detection Delay

If A\, is chosen to control the false alarm probability at some level o € (0, 1), supp (P) U supp (Q) C X
for some compact set X c R? the quantities , a, and MMD [P, Q)] jointly satisfy
Maximum Mean Discrepancy (MMD)

o (2n/a)
Let K : R? x R? — R be a bounded kernel with ~ (MMD[R, Q]
LA xR 8 DE a DOURGEE KEE Wi +(md and the number of random features is chosen so that

associated reproducing kernel Hilbert space M (]R ) w®) = [Kes i) Hy
(RKHS) H - and (canonical) feature map K (-, x) C3 + +/2log (2/a)

f R /—\ . VT > Cy =
for x € R% Then AN 2 (MMDg[PP, QJ)

MMDg (P, Q) = ||pux(P) — px(Q)|]4,, :\ ,} MMPKIP, Q] \/‘ then with probability at least 1 — «, it holds that

where pg : P — [ K(-,x)dP(x) is the kernel B P N log (2n/ )

(V=m7 <1V P

where C1, Cy, Cs5, and Cy are absolute constants independent of n, a, and MMDg [P, Q).

mean embedding [1].

= Kernel-based metric on probability measures
under mild conditions.

= Classic estimators are O(n?).

k@ = Ko, e

The detection delay of RFF-MMD is optimal from a minimax perspective, up to logarithmic terms.

Random Fourier Feature (RFF) Approximation Information Theoretic Bounds

For every bounded, continuous, and translation invariant kernel K : RY x R — R there is a constant

= |f K is bounded continuous translation-invariant, by Bochner’s theorem ) ,
Cx depending only on K and absolute constants ay, 5y € (0,1) independent of K, such that for any

K(x,y) = / e~ YA (w). a < o it holds that
Rd
. log (1/c)
= Approximate K by [3; 4] N:Poo(ljr\}{;oo)ga ilifl) P, (N >n+ CK(I\/II\/IDK[]P’, @])2 > Bo
3 P,QeM;

K(x,y) = (2x(x), 2x(y)), where 2x(x) = —= ((sin(w/ x), cos(w-TX)));zl e R”,

1
Jr J

with the infimum being over all extended stopping times.
leading to

. ) s, 1 o
MMD s Yim] = e (Ba) = 115.(@0) |, = |17 20 20 = 32 20

' Numerical Experiments

Hi
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= Observation: Both sums can be stored explicitly and MMD can be efficiently computed. = MNIST (d = 768). Pre-change: 64 samples of digit 0; post-change: samples of indicated digit.
—+—Online RFF MMD == OKCUSUM —=x-= ScanB =+-- NewMA
Q = MNISTI Q = MNIST2 Q = MNIST3
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Proposed Change Detection Algorithm: Online RFF-MMD S e XX
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= At the n-th iteration, the algorithm considers logy(n) splits of the data stream {X3,..., X,,}. For é o o e X X=X | il —
every such split the RFF-MMD between empirical measures of the two samples is computed. The 4 e v it ot T B et i okl AR N S S
. . . : oemme b i || e
process is stopped at the first n for which at least one statistic is larger than a given threshold. - D e 3 I R —
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. / \/.\ JPEr T . = HASC (Human Activity Sensing Consortium; d = 3). Pre-change: 100 samples of “Walking”:
pr 5 . 4 ]P(n—2j+1)n,' post-change: 100 samples of “Staying’.
\ (1p=2J ’ \~_ - . .
\\_1_'(12,)/ 1 Algorithm Average delay Too early Miss
Online RFF MMD 21.86 2 1
X1 | X2 Xn-1] Xu NewMA 34.25 1 5
: ScanB 31.20 0 0]
j=0 OKCUSUM 17.44 1 0
RuLSIF 20.38 2 0]

= Formally, the Online RFF-MMD stopping time is defined as

[logy(n)] 1 = Loudness of Chopin’s Mazurka Op. 17 No. 4 (d = 1). Change points in loudness information of
N=infl{n>2] U \/ (n ) MMD . [Xlz(n—Qj)n X(n—2j+1):n] AL Chopm s Mazurkas correspond to score positions having dynamic markmgs, tempo, or expression
- n markings, among others [2]. Our proposed method flags 10 change points too early, and, on the
remaining 15 has an average detection delay of 73.67, with a median detection delay of 64.0.

= The algorithm has logarithmic time complexity per observation and overall logarithmic space

complexity, as illustrated by the following example: upon observing the first n = 6 elements " Lento ma non tr0ppo(J=3152) espressivo ten. b
. " X /\' - i
Xy, ..., Xs, the algorithm operates as follows 'S e - - B D ElJdEsnd i
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€= Merge sotto voce -
n=2:1} I . I 5 I
2= 3x(X1) 2z =3k (X2) =) k(X)
c= c= =1
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